Effective bounds for the negativity of Shimura curves on Hilbert modular surfaces

dc.contributor.authorSamol, Sonia
dc.date.accessioned2016-10-06T06:45:58Z
dc.date.available2016-10-06T08:45:58Z
dc.date.issued2016
dc.description.abstractThe Bounded Negativity Conjecture states that for each smooth projective surface X defined over a field of characteristic zero there exists a number b(X) bigger or equal to 0 such that the self-intersection number C^2 for every reduced, irreducible curve C in X is bounded below by b(X), i.e. C^2 is bigger or equal to -b(X). In this thesis, we consider Hirzebruch-Zagier curves on Hilbert modular surfaces and give explicit bounds for the self-intersection numbers in these cases. More general, we give a bound for the self-intersection number of reduced, irreducible Shimura curves C on Hilbert modular surfaces X, generalising a result from the literature from compact Hilbert modular surfaces to non-compact Hilbert modular surfaces. We compare the resulting bounds with the actual self-intersection numbers of Hirzebruch-Zagier curves calculated with Pari/GP.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-1028
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/1030
dc.identifier.urnurn:nbn:de:hebis:77-diss-1000007063
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleEffective bounds for the negativity of Shimura curves on Hilbert modular surfacesen_GB
dc.typeDissertationde_DE
jgu.description.extentviii, 82 Seiten
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.organisation.year2016
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510
jgu.type.dinitypePhDThesis
jgu.type.resourceText
jgu.type.versionOriginal worken_GB
opus.date.accessioned2016-10-06T06:45:58Z
opus.date.available2016-10-06T08:45:58
opus.date.modified2016-10-14T08:54:54Z
opus.identifier.opusid100000706
opus.institute.number0804
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Mathematikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeDissertationde_DE
opus.type.contenttypeDissertationen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
100000706.pdf
Size:
916.45 KB
Format:
Adobe Portable Document Format