Effective bounds for the negativity of Shimura curves on Hilbert modular surfaces
dc.contributor.author | Samol, Sonia | |
dc.date.accessioned | 2016-10-06T06:45:58Z | |
dc.date.available | 2016-10-06T08:45:58Z | |
dc.date.issued | 2016 | |
dc.description.abstract | The Bounded Negativity Conjecture states that for each smooth projective surface X defined over a field of characteristic zero there exists a number b(X) bigger or equal to 0 such that the self-intersection number C^2 for every reduced, irreducible curve C in X is bounded below by b(X), i.e. C^2 is bigger or equal to -b(X). In this thesis, we consider Hirzebruch-Zagier curves on Hilbert modular surfaces and give explicit bounds for the self-intersection numbers in these cases. More general, we give a bound for the self-intersection number of reduced, irreducible Shimura curves C on Hilbert modular surfaces X, generalising a result from the literature from compact Hilbert modular surfaces to non-compact Hilbert modular surfaces. We compare the resulting bounds with the actual self-intersection numbers of Hirzebruch-Zagier curves calculated with Pari/GP. | en_GB |
dc.identifier.doi | http://doi.org/10.25358/openscience-1028 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/1030 | |
dc.identifier.urn | urn:nbn:de:hebis:77-diss-1000007063 | |
dc.language.iso | eng | |
dc.rights | InC-1.0 | de_DE |
dc.rights.uri | https://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 510 Mathematik | de_DE |
dc.subject.ddc | 510 Mathematics | en_GB |
dc.title | Effective bounds for the negativity of Shimura curves on Hilbert modular surfaces | en_GB |
dc.type | Dissertation | de_DE |
jgu.description.extent | viii, 82 Seiten | |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.organisation.year | 2016 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 510 | |
jgu.type.dinitype | PhDThesis | |
jgu.type.resource | Text | |
jgu.type.version | Original work | en_GB |
opus.date.accessioned | 2016-10-06T06:45:58Z | |
opus.date.available | 2016-10-06T08:45:58 | |
opus.date.modified | 2016-10-14T08:54:54Z | |
opus.identifier.opusid | 100000706 | |
opus.institute.number | 0804 | |
opus.metadataonly | false | |
opus.organisation.string | FB 08: Physik, Mathematik und Informatik: Institut für Mathematik | de_DE |
opus.subject.dfgcode | 00-000 | |
opus.type.contenttype | Dissertation | de_DE |
opus.type.contenttype | Dissertation | en_GB |
Files
Original bundle
1 - 1 of 1