Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-98
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, Fugui-
dc.contributor.authorYu, Chunyang-
dc.contributor.authorTries, Alexander-
dc.contributor.authorZhang, Heng-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorBasse, Kristoffer-
dc.contributor.authorHansen, Michael Ryan-
dc.contributor.authorBilbao, Nerea-
dc.contributor.authorBonn, Mischa-
dc.contributor.authorWang, Hai I.-
dc.contributor.authorMai, Yiyong-
dc.date.accessioned2019-08-20T12:37:15Z-
dc.date.available2019-08-20T14:37:15Z-
dc.date.issued2019-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/100-
dc.description.abstractIn this Communication, we report the first synthesis of structurally well-defined graphene nanoribbons (gnrs) functionalized with dendritic polymers. the resultant gnrs possess grafting ratios of 0.59-0.68 for the dendrons of different generations. remarkably, the precise 3d branched conformation of the grafted dendrons affords the gnrs unprecedented 1d supramolecular self-assembly behavior in tetrahydrofuran (thf), yielding nanowires, helices and nanofibers depending on the dimension of the dendrons. the gnr superstructures in thf exhibit near-infrared absorption with maxima between 650 and 700 nm, yielding an optical bandgap of 1.2-1.3 ev. ultrafast photoconductivity analyses unveil that the helical structures exhibit the longest free carrier (3.5 ps) and exciton lifetime (several hundred ps) among the three superstructure systems. this study opens pathways for tunable construction of ordered gnr superstructures with promising optoelectronic applications.en_GB
dc.language.isoeng-
dc.rightsInCopyrightde_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleTunable superstructures of dendronized graphene nanoribbons in liquid phaseen_GB
dc.typeZeitschriftenaufsatzde_DE
dc.identifier.urnurn:nbn:de:hebis:77-publ-592003-
dc.identifier.doihttp://doi.org/10.25358/openscience-98-
jgu.type.dinitypearticle-
jgu.type.versionAccepted versionen_GB
jgu.type.resourceText-
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik-
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleJournal of the American Chemical Society-
jgu.journal.volume141-
jgu.journal.issue28-
jgu.pages.start10972-
jgu.pages.end10977-
jgu.publisher.year2019-
jgu.publisher.nameAmerican Chemical Society-
jgu.publisher.placeWashington, DC-
jgu.publisher.urihttp://dx.doi.org/10.1021/jacs.9b04927-
jgu.publisher.issn1520-5126-
jgu.publisher.issn0002-7863-
jgu.organisation.placeMainz-
jgu.subject.ddccode530-
opus.date.accessioned2019-08-20T12:37:15Z-
opus.date.modified2019-09-03T09:30:54Z-
opus.date.available2019-08-20T14:37:15-
opus.subject.dfgcode00-000-
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.identifier.opusid59200-
opus.institute.number0801-
opus.metadataonlyfalse-
opus.type.contenttypeForschungsberichtde_DE
opus.type.contenttypeResearch Reporten_GB
opus.affiliatedTries, Alexander-
opus.affiliatedKläui, Mathias-
jgu.publisher.doi10.1021/jacs.9b04927
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
59200.pdf6.29 MBAdobe PDFView/Open