Prediction of cancer drug resistance and implications for personalized medicine

dc.contributor.authorVolm, Manfred
dc.contributor.authorEfferth, Thomas
dc.date.accessioned2022-09-14T07:52:50Z
dc.date.available2022-09-14T07:52:50Z
dc.date.issued2015
dc.description.abstractDrug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug-resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of our predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. We propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new treatment options such as antibody therapy, adoptive immune therapy, hyperthermia, gene therapy etc. The high accuracy to predict resistant tumors may be exploited to develop new strategies for individualized cancer therapy. This new concept bears the potential of a revival of predictive tests for personalized medicine.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.identifier.doihttp://doi.org/10.25358/openscience-7747
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7762
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titlePrediction of cancer drug resistance and implications for personalized medicineen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleFrontiers in oncologyde
jgu.journal.volume5de
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 282de
jgu.publisher.doi10.3389/fonc.2015.00282de
jgu.publisher.issn2234-943Xde
jgu.publisher.nameFrontiers Mediade
jgu.publisher.placeLausannede
jgu.publisher.urihttp://dx.doi.org/10.3389/fonc.2015.00282de
jgu.publisher.year2015
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde
opus.affiliatedEfferth, Thomas
opus.date.modified2017-05-12T09:19:50Z
opus.identifier.opusid52603
opus.institute.number0908
opus.metadataonlyfalse
opus.organisation.stringFB 09: Chemie, Pharmazie und Geowissenschaften: Institut für Pharmaziede_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
prediction_of_cancer_drug_res-20220913190849926.pdf
Size:
4.42 MB
Format:
Adobe Portable Document Format
Description: