Urata's theorem in the logarithmic case and applications to integral points

dc.contributor.authorJavanpeykar, Ariyan
dc.contributor.authorLevin, Aaron
dc.date.accessioned2023-02-02T11:15:56Z
dc.date.available2023-02-02T11:15:56Z
dc.date.issued2022
dc.description.abstractUrata showed that a pointed compact hyperbolic variety admits only finitely many maps from a pointed curve. We extend Urata’s theorem to the setting of (not necessarily compact) hyperbolically embeddable varieties. As an application, we show that a hyperbolically embeddable variety over a number field 𝐾 with only finitely many𝐿,𝑇-points for any number field 𝐿∕𝐾and any finite set of finite places 𝑇 of 𝐿 has, in fact, only finitely many points in any given ℤ-finitely generated integral domain of characteristic zero. We use this latter result in combination with Green’s criterion for hyperbolic embeddability to obtain novel finiteness results for integral points on symmetric self-products of smooth affine curves and on complements of large divisors in projective varieties. Finally, we use a partial converse to Green’s criterion to further study hyperbolic embeddability (or its failure) in the case of symmetric self-products of curves. As a by-product of our results, we obtain the first example of a smooth affine Brody-hyperbolic threefold over ℂ which is not hyperbolically embeddable.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8759
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8775
dc.language.isoengde
dc.rightsCC-BY-NC-ND-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleUrata's theorem in the logarithmic case and applications to integral pointsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue5de
jgu.journal.titleBulletin of the London Mathematical Societyde
jgu.journal.volume54de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end1790de
jgu.pages.start1772de
jgu.publisher.doi10.1112/blms.12655de
jgu.publisher.issn1469-2120de
jgu.publisher.nameJohn Wiley & Sons, Ltdde
jgu.publisher.placeOxfordde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
uratas_theorem_in_the_logarit-20230202121404624.pdf
Size:
215.92 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections