Motion correction for separate mandibular and cranial movements in cone beam CT reconstructions
dc.contributor.author | Birklein, Lukas | |
dc.contributor.author | Niebler, Stefan | |
dc.contributor.author | Schömer, Elmar | |
dc.contributor.author | Brylka, Robert | |
dc.contributor.author | Schwanecke, Ulrich | |
dc.contributor.author | Schulze, Ralf | |
dc.date.accessioned | 2023-08-03T07:44:20Z | |
dc.date.available | 2023-08-03T07:44:20Z | |
dc.date.issued | 2023 | |
dc.date.updated | 2023-07-24T12:09:44Z | |
dc.description.abstract | Background Patient motions are a repeatedly reported phenomenon in oral and maxillofacial cone beam CT scans, leading to reconstructions of limited usability. In certain cases, independent movements of the mandible induce unpredictable motion patterns. Previous motion correction methods are not able to handle such complex cases of patient movements. Purpose Our goal was to design a combined motion estimation and motion correction approach for separate cranial and mandibular motions, solely based on the 2D projection images from a single scan. Methods Our iterative three-step motion correction algorithm models the two articulated motions as independent rigid motions. First of all, we segment cranium and mandible in the projection images using a deep neural network. Next, we compute a 3D reconstruction with the poses of the object's trajectories fixed. Third, we improve all poses by minimizing the projection error while keeping the reconstruction fixed. Step two and three are repeated alternately. Results We find that our marker-free approach delivers reconstructions of up to 85% higher quality, with respect to the projection error, and can improve on already existing techniques, which model only a single rigid motion. We show results of both synthetic and real data created in different scenarios. The reconstruction of motion parameters in a real environment was evaluated on acquisitions of a skull mounted on a hexapod, creating a realistic, easily reproducible motion profile. Conclusions The proposed algorithm consistently enhances the visual quality of motion impaired cone beam computed tomography scans, thus eliminating the need for a re-scan in certain cases, considerably lowering radiation dosage for the patient. It can flexibly be used with differently sized regions of interest and is even applicable to local tomography. | en_GB |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin | |
dc.identifier.doi | http://doi.org/10.25358/openscience-9342 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/9360 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.ddc | 004 Informatik | de_DE |
dc.subject.ddc | 004 Data processing | en_GB |
dc.title | Motion correction for separate mandibular and cranial movements in cone beam CT reconstructions | en_GB |
dc.type | Zeitschriftenaufsatz | de |
elements.object.id | 154581 | |
elements.object.labels | cone beam computed tomography | |
elements.object.labels | motion | |
elements.object.labels | tomography | |
elements.object.labels | Skull | |
elements.object.labels | Mandible | |
elements.object.labels | Humans | |
elements.object.labels | Artifacts | |
elements.object.labels | Phantoms, Imaging | |
elements.object.labels | Movement | |
elements.object.labels | Algorithms | |
elements.object.labels | Motion | |
elements.object.labels | Image Processing, Computer-Assisted | |
elements.object.labels | Cone-Beam Computed Tomography | |
elements.object.labels | cone beam computed tomography | |
elements.object.labels | motion | |
elements.object.labels | tomography | |
elements.object.labels | Humans | |
elements.object.labels | Movement | |
elements.object.labels | Motion | |
elements.object.labels | Cone-Beam Computed Tomography | |
elements.object.labels | Skull | |
elements.object.labels | Mandible | |
elements.object.labels | Algorithms | |
elements.object.labels | Image Processing, Computer-Assisted | |
elements.object.labels | Phantoms, Imaging | |
elements.object.labels | Artifacts | |
elements.object.labels | 0299 Other Physical Sciences | |
elements.object.labels | 0903 Biomedical Engineering | |
elements.object.labels | 1112 Oncology and Carcinogenesis | |
elements.object.labels | Nuclear Medicine & Medical Imaging | |
elements.object.labels | 4003 Biomedical engineering | |
elements.object.labels | 5105 Medical and biological physics | |
elements.object.type | journal-article | |
jgu.journal.issue | 6 | de |
jgu.journal.title | Medical physics | de |
jgu.journal.volume | 50 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.pages.end | 3525 | de |
jgu.pages.start | 3511 | de |
jgu.publisher.doi | 10.1002/mp.16347 | de |
jgu.publisher.issn | 0094-2405 | de |
jgu.publisher.licence | CC BY | |
jgu.publisher.name | Wiley | de |
jgu.publisher.place | Hoboken, NJ | de |
jgu.publisher.year | 2023 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 004 | de |
jgu.subject.dfg | Naturwissenschaften | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Published version | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- motion_correction_for_separat-20230724140945582.pdf
- Size:
- 3.12 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version