Smooth hypersurfaces in abelian varieties over arithmetic rings

dc.contributor.authorJavanpeykar, Ariyan
dc.contributor.authorMathur, Siddharth
dc.date.accessioned2023-04-27T12:49:31Z
dc.date.available2023-04-27T12:49:31Z
dc.date.issued2022
dc.description.abstractLet A be an abelian scheme of dimension at least four over a Z-finitely generated integral domain R of characteristic zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-8815
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8831
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleSmooth hypersurfaces in abelian varieties over arithmetic ringsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleForum of Mathematics, Sigmade
jgu.journal.volume10de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end14de
jgu.pages.start1de
jgu.publisher.doi10.1017/fms.2022.87de
jgu.publisher.issn2050-5094de
jgu.publisher.nameCambridge University Pressde
jgu.publisher.placeCambridgede
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
smooth_hypersurfaces_in_abeli-20230217153415940.pdf
Size:
402.21 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections