In 1 day(s), 5 hour(s) and 16 minute(s): Am Freitag, den 22.08.2025 von 15:00 bis voraussichtlich 17 Uhr wird Gutenberg Open Science wegen eines Updates nicht zur Verfügung stehen. Wir bitten die Unannehmlichkeit zu entschuldigen.
 

Topological mass of magnetic Skyrmions probed by ultrafast dynamic imaging

dc.contributor.authorBüttner, Felix
dc.date.accessioned2013-12-18T09:40:19Z
dc.date.available2013-12-18T10:40:19Z
dc.date.issued2013
dc.description.abstractIn dieser Arbeit untersuchen wir mittels zeitaufgelöster Abbildungen die Gigahertz-Dynamik von magnetischen Skyrmionen, um die Bewegungsgleichungen für diese Quasiteilchen zu bestimmen. Um dieses Ziel zu erreichen haben wir zunächst ein CoB/Pt Schichtsystem entwickelt, das starke senkrechte magnetische Anisotropie mit einer besonders geringen Rauigkeit der Energielandschaft verbindet. Diese Eigenschaften sind für das repetitive dynamische Abbildungsverfahren unerlässlich. In einem zweiten Schritt haben wir das Probendesign optimiert und so weiterentwickelt, dass eine Beobachtung der Skyrmionenbewegung mit einer Auflösung von besser als 3 nm möglich wurde. Aufgrund dieser Verbesserungen ist es uns gelungen, die Trajektorie eines Skyrmionen aufzuzeichnen. Diese Bewegung ist eine Superposition von zwei Drehbewegungen, einer im Uhrzeigersinn und einer gegen läufigen. Aus der Existenz dieser zwei Moden lässt sich schließen, dass Skyrmionen träge Quasiteilchen sind, und aus den Frequenzen können wir einen Wert für die träge Masse ableiten. Es stellt sich heraus, dass die Masse von Skyrmion fünfmal größer ist als von existierenden Theorien vorhergesagt. Die Masse wird folglich durch einen neuartigen Mechanismus bestimmt, der sich aus der räumlichen Beschränkung der Skyrmionen ergibt, welche sich direkt aus der Topologie bleitenrnlässt.de_DE
dc.description.abstractIn this thesis, we investigate the GHz dynamics of skyrmionic spin structures byrnmeans of pump-probe dynamic imaging to determine the equation of motion thatrngoverns the behavior of these technologically relevant spin structures. To achieve this goal, we first designed and optimized a perpendicular magnetic anisotropy CoB/Pt multilayer material for low magnetic pinning, as required for ultrafast pump-probe imaging experiments. Second, we developed an integrated sample design for x-ray holography capable of tracking relative magnetic positional changes down to 3 nm spatial resolution. These advances enabled us to image the trajectory of a single magnetic Skyrmion. We find that the motion is comprised of two gyrotropic modes, one clockwise and one counterclockwise. The existence of two modes shows that Skyrmions are massive quasiparticles. From their derived frequencies we find an inertial mass for the Skyrmion which is a factor of five larger than expected based on existing models for inertia in magnetism. Our results demonstrate that the mass of Skyrmions is based on a novel mechanism emerging from their confined nature, which is a direct consequence of their topology.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-1788
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/1790
dc.identifier.urnurn:nbn:de:hebis:77-35860
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleTopological mass of magnetic Skyrmions probed by ultrafast dynamic imagingen_GB
dc.typeDissertationde_DE
jgu.description.extent101 S.
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.organisation.year2013
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530
jgu.type.dinitypePhDThesis
jgu.type.resourceText
jgu.type.versionOriginal worken_GB
opus.date.accessioned2013-12-18T09:40:19Z
opus.date.available2013-12-18T10:40:19
opus.date.modified2013-12-18T10:47:55Z
opus.identifier.opusid3586
opus.institute.number0801
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeDissertationde_DE
opus.type.contenttypeDissertationen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3586.pdf
Size:
24.39 MB
Format:
Adobe Portable Document Format