Mechanisms of electrical switching of ultrathin CoO/Pt bilayers

dc.contributor.authorSchmitt, Christin
dc.contributor.authorRajan, Adithya
dc.contributor.authorBeneke, Grischa
dc.contributor.authorKumar, Aditya
dc.contributor.authorSparmann, Tobias
dc.contributor.authorMeer, Hendrik
dc.contributor.authorBednarz, Beatrice
dc.contributor.authorRamos, Rafael
dc.contributor.authorNiño, Miguel Angel
dc.contributor.authorFoerster, Michael
dc.contributor.authorSaitoh, Eiji
dc.contributor.authorKläui, Mathias
dc.date.accessioned2024-02-29T11:26:03Z
dc.date.available2024-02-29T11:26:03Z
dc.date.issued2024
dc.description.abstractWe study current-induced switching of the Néel vector in CoO/Pt bilayers to understand the underlying antiferromagnetic switching mechanism. Surprisingly, we find that for ultrathin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing these results to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the details of the reorientation of the Néel vector in ultrathin CoO(4 nm). This allows us to understand how opposite resistance changes can result from a thermomagnetoelastic switching mechanism. Importantly, our spatially resolved imaging shows that regions where the current pulses are applied and regions further away exhibit different switched spin structures, which can be explained by a spin–orbit torque-based switching mechanism that can dominate in very thin films.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-10132
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/10150
dc.language.isoengde
dc.rightsCC-BY-NC-ND-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleMechanisms of electrical switching of ultrathin CoO/Pt bilayersen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue5de
jgu.journal.titleNano lettersde
jgu.journal.volume24de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end1476de
jgu.pages.start1471de
jgu.publisher.doi10.1021/acs.nanolett.3c02890de
jgu.publisher.issn1530-6992de
jgu.publisher.nameAmerican Chemical Societyde
jgu.publisher.placeWashington, DCde
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mechanisms_of_electrical_swit-20240229122223633.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections