HowDirty: an R package to evaluate molecular contaminants in LC-MS experiments

dc.contributor.authorGomez-Zepeda, David
dc.contributor.authorMichna, Thomas
dc.contributor.authorZiesmann, Tanja
dc.contributor.authorDistler, Ute
dc.contributor.authorTenzer, Stefan
dc.date.accessioned2023-12-08T09:34:13Z
dc.date.available2023-12-08T09:34:13Z
dc.date.issued2023
dc.description.abstractContaminants derived from consumables, reagents, and sample handling often negatively affect LC-MS data acquisition. In proteomics experiments, they can markedly reduce identification performance, reproducibility, and quantitative robustness. Here, we introduce a data analysis workflow combining MS1 feature extraction in Skyline with HowDirty, an R-markdown-based tool, that automatically generates an interactive report on the molecular contaminant level in LC-MS data sets. To facilitate the interpretation of the results, the HTML report is self-contained and self-explanatory, including plots that can be easily interpreted. The R package HowDirty is available from https://github.com/DavidGZ1/HowDirty. To demonstrate a showcase scenario for the application of HowDirty, we assessed the impact of ultrafiltration units from different providers on sample purity after filter-assisted sample preparation (FASP) digestion. This allowed us to select the filter units with the lowest contamination risk. Notably, the filter units with the lowest contaminant levels showed higher reproducibility regarding the number of peptides and proteins identified. Overall, HowDirty enables the efficient evaluation of sample quality covering a wide range of common contaminant groups that typically impair LC-MS analyses, facilitating corrective or preventive actions to minimize instrument downtime.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-9773
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9791
dc.language.isoengde
dc.rightsCC-BY-NC-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleHowDirty: an R package to evaluate molecular contaminants in LC-MS experimentsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleProteomicsde
jgu.journal.volumeVersion of Record (VoR)de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative2300134de
jgu.publisher.doi10.1002/pmic.202300134de
jgu.publisher.issn1615-9853de
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.year2023
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.dfgLebenswissenschaftende
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
howdirty__an_r_package_to_eva-20231208102956316.pdf
Size:
810.37 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections