Assessing 14 c blanks in the small-scale analysis of N-alkane compound-specific-radiocarbon-analysis

Loading...
Thumbnail Image

Date issued

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Reuse License

Description of rights: CC-BY-4.0
Item type: Item , ZeitschriftenaufsatzAccess status: Open Access ,

Abstract

Compound-specific radiocarbon analysis (CSRA) provides the possibility to date sample material at a molecular level. N-alkanes are considered as specific compounds with high potential to CSRA. As these compounds originate from plant waxes, their radiocarbon (14C) analysis can provide valuable information about the age and origin of organic materials. This helps to reconstruct and understand environmental conditions and changes in vegetation in the past. However, CSRA has two main challenges: The small sample size of CSRA samples, making them extremely sensitive to blank effects, and the input of unknown amounts of extraneous carbon during the analytical procedure. According to the previous study from Sun and co-workers, we used different-sized aliquots of leaves Fagus sylvatica (nC27, nC29) and Festuca rubra agg (nC31, nC33) as modern standards and two commercial standards (nC26, nC28) as fossil standards for blank determination. A third commercial standard (nC27) with predetermined radiocarbon content of F14

Description

Keywords

Citation

Published in

Radiocarbon, 66, 2, Cambridge University Press, Cambridge, 2024, https://doi.org/10.1017/RDC.2024.26

Relationships

Collections

Endorsement

Review

Supplemented By

Referenced By