Scalable approach to molecular motor-polymer conjugates for light-driven artificial muscles

dc.contributor.authorYao, Xuyang
dc.contributor.authorVishnu, Jude Ann
dc.contributor.authorLupfer, Claudius
dc.contributor.authorHoenders, Daniel
dc.contributor.authorSkarsetz, Oliver
dc.contributor.authorChen, Weixiang
dc.contributor.authorDattler, Damien
dc.contributor.authorPerrot, Alexis
dc.contributor.authorWang, Wen-zhi
dc.contributor.authorGao, Chuan
dc.contributor.authorGiuseppone, Nicolas
dc.contributor.authorSchmid, Friederike
dc.contributor.authorWalther, Andreas
dc.date.accessioned2025-08-07T12:12:45Z
dc.date.available2025-08-07T12:12:45Z
dc.date.issued2024
dc.description.abstractThe integration of molecular machines and motors into materials represents a promising avenue for creating dynamic and functional molecular systems, with potential applications in soft robotics or reconfigurable biomaterials. However, the development of truly scalable and controllable approaches for incorporating molecular motors into polymeric matrices has remained a challenge. Here, it is shown that light-driven molecular motors with sensitive photo-isomerizable double bonds can be converted into initiators for Cu-mediated controlled/living radical polymerization enabling the synthesis of star-shaped motor-polymer conjugates. This approach enables scalability, precise control over the molecular structure, block copolymer structures, and high-end group fidelity. Moreover, it is demonstrated that these materials can be crosslinked to form gels with quasi-ideal network topology, exhibiting light-triggered contraction. The influence of arm length and polymer structure is investigated, and the first molecular dynamics simulation framework to gain deeper insights into the contraction processes is developed. Leveraging this scalable methodology, the creation of bilayer soft robotic devices and cargo-lifting artificial muscles is showcased, highlighting the versatility and potential applications of this advanced polymer chemistry approach. It is anticipated that the integrated experimental and simulation framework will accelerate scalable approaches for active polymer materials based on molecular machines, opening up new horizons in materials science and bioscience.en
dc.identifier.doihttps://doi.org/10.25358/openscience-12051
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/12072
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 Chemiede
dc.subject.ddc540 Chemistry and allied sciencesen
dc.titleScalable approach to molecular motor-polymer conjugates for light-driven artificial musclesen
dc.typeZeitschriftenaufsatz
jgu.journal.issue28
jgu.journal.titleAdvanced materials
jgu.journal.volume36
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative2403514
jgu.publisher.doi10.1002/adma.202403514
jgu.publisher.issn1521-4095
jgu.publisher.nameWiley-VCH
jgu.publisher.placeWeinheim
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode540
jgu.subject.dfgNaturwissenschaften
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
scalable_approach_to_molecula-2025080714124594256.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.1 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections