Accelerating the hit-to-lead optimization of a SARS-CoV-2 Mpro inhibitor series by combining high-throughput medicinal chemistry and computational simulations

dc.contributor.authorHazemann, Julien
dc.contributor.authorKimmerlin, Thierry
dc.contributor.authorMac Sweeney, Aengus
dc.contributor.authorBourquin, Geoffroy
dc.contributor.authorLange, Roland
dc.contributor.authorRitz, Daniel
dc.contributor.authorRichard-Bildstein, Sylvia
dc.contributor.authorRegeon, Sylvain
dc.contributor.authorCzodrowski, Paul
dc.date.accessioned2025-10-09T14:15:46Z
dc.date.issued2025
dc.description.abstractIn this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1′ pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.en
dc.identifier.doihttps://doi.org/10.25358/openscience-13469
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/13490
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 Chemiede
dc.subject.ddc540 Chemistry and allied sciencesen
dc.subject.ddc570 Biowissenschaftende
dc.subject.ddc570 Life sciencesen
dc.titleAccelerating the hit-to-lead optimization of a SARS-CoV-2 Mpro inhibitor series by combining high-throughput medicinal chemistry and computational simulationsen
dc.typeZeitschriftenaufsatz
jgu.identifier.uuidb017c4cc-96b3-415e-9170-08a5f5d3b4de
jgu.journal.issue8
jgu.journal.titleJournal of medicinal chemistry
jgu.journal.volume68
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end8294
jgu.pages.start8269
jgu.publisher.doi10.1021/acs.jmedchem.4c02941
jgu.publisher.issn0022-2623
jgu.publisher.nameAmerican Chemical Society
jgu.publisher.placeWashington, DC
jgu.publisher.year2025
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode540
jgu.subject.ddccode570
jgu.subject.dfgNaturwissenschaften
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
accelerating_the_hittolead_op-20251009161546462292.pdf
Size:
9.7 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.14 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections