Gap junctions desynchronize a neural circuit to stabilize insect flight

dc.contributor.authorHürkey, Silvan
dc.contributor.authorNiemeyer, Nelson
dc.contributor.authorSchleimer, Jan-Hendrik
dc.contributor.authorRyglewski, Stefanie
dc.contributor.authorSchreiber, Susanne
dc.contributor.authorDuch, Carsten
dc.date.accessioned2024-05-23T10:44:37Z
dc.date.available2024-05-23T10:44:37Z
dc.date.issued2023
dc.date.updated2024-05-22T07:55:48Z
dc.description.abstractInsect asynchronous flight is one of the most prevalent forms of animal locomotion used by more than 600,000 species. Despite profound insights into the motor patterns1, biomechanics2,3 and aerodynamics underlying asynchronous flight4,5, the architecture and function of the central-pattern-generating (CPG) neural network remain unclear. Here, on the basis of an experiment–theory approach including electrophysiology, optophysiology, Drosophila genetics and mathematical modelling, we identify a miniaturized circuit solution with unexpected properties. The CPG network consists of motoneurons interconnected by electrical synapses that, in contrast to doctrine, produce network activity splayed out in time instead of synchronized across neurons. Experimental and mathematical evidence support a generic mechanism for network desynchronization that relies on weak electrical synapses and specific excitability dynamics of the coupled neurons. In small networks, electrical synapses can synchronize or desynchronize network activity, depending on the neuron-intrinsic dynamics and ion channel composition. In the asynchronous flight CPG, this mechanism translates unpatterned premotor input into stereotyped neuronal firing with fixed sequences of cell activation that ensure stable wingbeat power and, as we show, is conserved across multiple species. Our findings prove a wider functional versatility of electrical synapses in the dynamic control of neural circuits and highlight the relevance of detecting electrical synapses in connectomics.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-10382
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/10400
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleGap junctions desynchronize a neural circuit to stabilize insect flighten_GB
dc.typeZeitschriftenaufsatzde
elements.object.id158267
elements.object.labelsNeural Pathways
elements.object.labelsMotor Neurons
elements.object.labelsGap Junctions
elements.object.labelsAnimals
elements.object.labelsDrosophila melanogaster
elements.object.labelsFlight, Animal
elements.object.labelsElectrical Synapses
elements.object.labelsElectrophysiological Phenomena
elements.object.labelsAnimals
elements.object.labelsElectrical Synapses
elements.object.labelsElectrophysiological Phenomena
elements.object.labelsFlight, Animal
elements.object.labelsGap Junctions
elements.object.labelsMotor Neurons
elements.object.labelsDrosophila melanogaster
elements.object.labelsNeural Pathways
elements.object.labelsGeneral Science & Technology
elements.object.typejournal-article
jgu.journal.titleNaturede
jgu.journal.volume618de
jgu.organisation.departmentFB 10 Biologiede
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7970
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end125de
jgu.pages.start118de
jgu.publisher.doi10.1038/s41586-023-06099-0de
jgu.publisher.issn0028-0836de
jgu.publisher.licenceCC BY
jgu.publisher.nameNature Publ. Groupde
jgu.publisher.placeLondonde
jgu.publisher.year2023
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570de
jgu.subject.dfgLebenswissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gap_junctions_desynchronize_a-20240522095557287.pdf
Size:
14.05 MB
Format:
Adobe Portable Document Format

Collections