Identification of lysosomotropism using explainable machine learning and morphological profiling cell painting data

dc.contributor.authorTandon, Aishvarya
dc.contributor.authorSantura, Anna
dc.contributor.authorWaldmann, Herbert
dc.contributor.authorPahl, Axel
dc.contributor.authorCzodrowski, Paul
dc.date.accessioned2025-01-09T10:50:00Z
dc.date.available2025-01-09T10:50:00Z
dc.date.issued2024
dc.description.abstractLysosomotropism is a phenomenon of diverse pharmaceutical interests because it is a property of compounds with diverse chemical structures and primary targets. While it is primarily reported to be caused by compounds having suitable lipophilicity and basicity values, not all compounds that fulfill such criteria are in fact lysosomotropic. Here, we use morphological profiling by means of the cell painting assay (CPA) as a reliable surrogate to identify lysosomotropism. We noticed that only 35% of the compound subset with matching physicochemical properties show the lysosomotropic phenotype. Based on a matched molecular pair analysis (MMPA), no key substructures driving lysosomotropism could be identified. However, using explainable machine learning (XML), we were able to highlight that higher lipophilicity, basicity, molecular weight, and lower topological polar surface area are among the important properties that induce lysosomotropism in the compounds of this subset.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-11207
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/11228
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleIdentification of lysosomotropism using explainable machine learning and morphological profiling cell painting dataen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleRSC medicinal chemistryde
jgu.journal.volume16de
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end2691de
jgu.pages.start2677de
jgu.publisher.doi10.1039/D4MD00107Ade
jgu.publisher.issn2632-8682de
jgu.publisher.nameRoyal Society of Chemistryde
jgu.publisher.placeCambridgede
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode540de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
identification_of_lysosomotro-20250109114859802.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections