Parallel and scalable short-read alignment on multi-core clusters using UPC++

dc.contributor.authorGonzález-Domínguez, Jorge
dc.contributor.authorLiu, Yongchao
dc.contributor.authorSchmidt, Bertil
dc.date.accessioned2022-07-14T08:26:03Z
dc.date.available2022-07-14T08:26:03Z
dc.date.issued2016
dc.description.abstractThe growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 aligner show that our implementation based on dynamic scheduling obtains good scalability on multi-core clusters. Through our evaluation, we are able to complete the single-end and paired-end alignments of 246 million reads of length 150 base-pairs in 11.54 and 16.64 minutes, respectively, using 32 nodes with four AMD Opteron 6272 16-core CPUs per node. In contrast, the multi-threaded original tool needs 2.77 and 5.54 hours to perform the same alignments on the 64 cores of one node. The source code of our parallel implementation is publicly available at the CUSHAW3 homepage (http://cushaw3.sourceforge.net).en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.identifier.doihttp://doi.org/10.25358/openscience-7418
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7432
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc004 Informatikde_DE
dc.subject.ddc004 Data processingen_GB
dc.titleParallel and scalable short-read alignment on multi-core clusters using UPC++en_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue1de
jgu.journal.titlePLoS onede
jgu.journal.volume11de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativee0145490de
jgu.publisher.doi10.1371/journal.pone.0145490de
jgu.publisher.issn1932-6203de
jgu.publisher.namePLoSde
jgu.publisher.placeLawrence, Kan.de
jgu.publisher.urihttp://dx.doi.org/10.1371/journal.pone.0145490de
jgu.publisher.year2016
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode004de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde
opus.affiliatedGonzález-Domínguez, Jorge
opus.affiliatedLiu, Yongchao
opus.affiliatedSchmidt, Bertil
opus.date.modified2018-08-22T09:54:48Z
opus.identifier.opusid53209
opus.institute.number0805
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Informatikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
parallel_and_scalable_shortre-20220712210247913.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Description: