Interactive and reproducible workflows for exploring and modeling RNA-seq data with pcaExplorer, ideal, and GeneTonic

dc.contributor.authorLudt, Annekathrin
dc.contributor.authorUstjanzew, Arsenij
dc.contributor.authorBinder, Harald
dc.contributor.authorStrauch, Konstantin
dc.contributor.authorMarini, Federico
dc.date.accessioned2023-01-19T10:34:56Z
dc.date.available2023-01-19T10:34:56Z
dc.date.issued2022
dc.description.abstractThe generation and interpretation of results from transcriptome profiling experiments via RNA sequencing (RNA-seq) can be a complex task. While raw data quality control, alignment, and quantification can be streamlined via efficient algorithms that can deliver the preprocessed expression matrix, a common bottleneck in the analysis of such large datasets is the subsequent in-depth, iterative processes of data exploration, statistical testing, visualization, and interpretation. Specific tools for these workflow steps are available but require a level of technical expertise which might be prohibitive for life and clinical scientists, who are left with essential pieces of information distributed among different tabular and list formats. Our protocols are centered on the joint use of our Bioconductor packages (pcaExplorer, ideal, GeneTonic) for interactive and reproducible workflows. All our packages provide an interactive and accessible experience via Shiny web applications, while still documenting the steps performed with RMarkdown as a framework to guarantee the reproducibility of the analyses, reducing the overall time to generate insights from the data at hand. These protocols guide readers through the essential steps of Exploratory Data Analysis, statistical testing, and functional enrichment analyses, followed by integration and contextualization of results. In our packages, the core elements are linked together in interactive widgets that make drill-down tasks efficient by viewing the data at a level of increased detail. Thanks to their interoperability with essential classes and gold-standard pipelines implemented in the open-source Bioconductor project and community, these protocols will permit complex tasks in RNA-seq data analysis, combining interactivity and reproducibility for following modern best scientific practices and helping to streamline the discovery process for transcriptome data. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8609
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8625
dc.language.isoengde
dc.rightsCC-BY-NC-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleInteractive and reproducible workflows for exploring and modeling RNA-seq data with pcaExplorer, ideal, and GeneTonicen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue4de
jgu.journal.titleCurrent protocolsde
jgu.journal.volume2de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativee411de
jgu.publisher.doi10.1002/cpz1.411de
jgu.publisher.issn2691-1299de
jgu.publisher.nameWileyde
jgu.publisher.placeHoboken, NJde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.dfgLebenswissenschaftende
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
interactive_and_reproducible_-20230119111930704.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections