Limit theorems for ancestral lineages in oriented percolation

dc.contributor.authorSchlüter, Timo
dc.date.accessioned2022-09-09T07:05:40Z
dc.date.available2022-09-09T07:05:40Z
dc.date.issued2022
dc.description.abstractIn dieser Arbeit betrachten wir zwei Modelle von Irrfahrten in zufälliger Umgebung. Das Erste ist eine gerichtete Irrfahrt auf dem Rückgrat von gerichteter Perkolation, die durch den Kontaktprozess generiert ist. Wir beweisen ein Vergleichsresultat zwischen quenched- und annealed-Verteilung auf dem Level von konstanten Boxen und verwenden Dieses um die Existenz von einem Maß $Q$ zu zeigen, dass invariant aus der Sicht des Teilchens und absolut stetig bezüglich des a priori Maßes $\bP$ ist. Wir zeigen, dass $\varphi$, die Radon-Nikodym-Ableitung von $Q$ bezüglich $\bP$, eine gewisse Konzentrationseigenschaft erfüllt und beweisen einen quenched lokalen Grenzwertsatz, der die quenched-Verteilung mit der annealed-Verteilung mal $\varphi$ vergleicht. Das zweite Modell ist eine Klasse von Irrfahrten in einer zufälliger Umgebeung gegeben durch gerichtete Perkolation, wo allgemeinere Annahmen an die Dynamiken der Irrfahrt getroffen werden. Wir verwenden eine Erneuerungskonstruktion für zwei Irrfahrten um ein Paar von Irrfahrten, dass in einer gemeinsamen Umgebung lebt, mit einem Paar zu vergleichen, dass sich in unabhängigen Umgebungen entwickelt. Dieser Vergleich erlaubt es einen quenched zentralen Grenzwertsatz zu zeigen.de_DE
dc.description.abstractIn this thesis we will consider two models of random walks in random environment. The first one is a directed random walk on the backbone of oriented percolation generated by the contact process. We prove a comparison result between the quenched and the annealed law on the level of constant boxes and use this to prove the existence of a measure $Q$ on the environments that is invariant with respect to the point of view of the particle and absolutely continuous with respect to the a priori measure $\bP$. We show that $\varphi$, the Radon-Nikodym derivative of $Q$ with respect to $\bP$, satisfies a certain concentration property and prove a quenched local limit theorem comparing the quenched law with the annealed law times $\varphi$. The second model is a class of random walks in an environment given by oriented percolation, where we make more general assumptions on the dynamics of the random walk. We use a regeneration construction for two random walks to compare a pair of random walks evolving in the same environment to a pair that evolves in two independent environments. This comparison allows us to prove a quenched central limit theorem.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-7567
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7581
dc.identifier.urnurn:nbn:de:hebis:77-openscience-8c0bbd6b-2bb6-4773-a37c-63df052f77bb3
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleLimit theorems for ancestral lineages in oriented percolationen_GB
dc.typeDissertationde
jgu.date.accepted2022-04-29
jgu.description.extent132 Seiten, Diagrammede
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.organisation.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypePhDThesisen_GB
jgu.type.resourceTextde
jgu.type.versionOriginal workde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
limit_theorems_for_ancestral_-20220815195604526.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: