ThermoNet : advanced deep neural network-based thermogram processing pipeline for automatic time series analysis of specific skin areas in moving legs
| dc.contributor.author | Andrés López, Daniel | |
| dc.contributor.author | Hillen, Barlo | |
| dc.contributor.author | Nägele, Markus | |
| dc.contributor.author | Simon, Perikles | |
| dc.contributor.author | Schömer, Elmar | |
| dc.date.accessioned | 2025-08-20T12:47:06Z | |
| dc.date.available | 2025-08-20T12:47:06Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2024-12-03T08:19:36Z | |
| dc.description.abstract | Infrared thermography is an emerging technique in biomedical research, potentially providing diagnostic insights into psychological stress, physical strain, muscle fatigue, inflammation, tissue damage, and diseases with thermogenic effects. However, manual analysis strategies are frequently applied causing incomparable, non-reproducible results and hampering standardization. Moreover, widely applied manual analysis cannot recognize blood vessel-related thermal radiation patterns during physical exercise. Therefore, an enhanced processing pipeline, “ThermoNet”, has been developed to automatically process thermograms captured during running. For acquisition, an automatic temperature calibration technique has been introduced to obtain reliable pixel-temperature mapping. The thermograms are semantically segmented in the processing pipeline to extract the anatomical regions of interest (ROIs) by a state-of-the-art deep neural network rather than considering both legs as a single area. A second neural network further examines the ROIs to identify different venous and arterial (perforator) patterns. Within the segments, advanced statistical features are computed to provide time series data. Separate analysis of venous and perforator vessel patterns is carried out on individual connected components, resulting in the extraction of 276 features for each thermogram. The enhanced ROI extraction achieved a high accuracy for the left and right calf on the manually annotated test set. Each step of the ThermoNet pipeline represents a significant improvement over previous analysis methods. Finally, ThermoNet is a transferable pipeline for automatic, reproducible, and objective analysis of ROIs in thermal image sequences of moving test individuals. | en |
| dc.identifier.doi | https://doi.org/10.25358/openscience-13135 | |
| dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/13156 | |
| dc.language.iso | eng | de |
| dc.rights | CC-BY-4.0 | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 004 Informatik | de |
| dc.subject.ddc | 004 Data processing | en |
| dc.subject.ddc | 610 Medizin | de |
| dc.subject.ddc | 610 Medical sciences | en |
| dc.subject.ddc | 796 Sport | de |
| dc.subject.ddc | 796 Athletic and outdoor sports and games | en |
| dc.title | ThermoNet : advanced deep neural network-based thermogram processing pipeline for automatic time series analysis of specific skin areas in moving legs | en |
| dc.type | Zeitschriftenaufsatz | de |
| elements.object.id | 177389 | |
| elements.object.labels | Artificial neural networks | |
| elements.object.labels | Image processing pipeline | |
| elements.object.labels | Pattern recognition | |
| elements.object.labels | Semantic segmentation | |
| elements.object.labels | Thermal imaging | |
| elements.object.labels | Artificial neural networks | |
| elements.object.labels | Image processing pipeline | |
| elements.object.labels | Pattern recognition | |
| elements.object.labels | Semantic segmentation | |
| elements.object.labels | Thermal imaging | |
| elements.object.labels | DeepSpoMed | |
| elements.object.labels | 0303 Macromolecular and Materials Chemistry | |
| elements.object.labels | 0306 Physical Chemistry (incl. Structural) | |
| elements.object.labels | 0399 Other Chemical Sciences | |
| elements.object.labels | Physical Chemistry | |
| elements.object.labels | 3406 Physical chemistry | |
| elements.object.type | journal-article | |
| jgu.journal.issue | 19 | de |
| jgu.journal.title | Journal of thermal analysis and calorimetry | de |
| jgu.journal.volume | 149 | de |
| jgu.organisation.department | FB 02 Sozialwiss., Medien u. Sport | de |
| jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
| jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
| jgu.organisation.number | 7910 | |
| jgu.organisation.number | 7940 | |
| jgu.organisation.place | Mainz | |
| jgu.organisation.ror | https://ror.org/023b0x485 | |
| jgu.pages.end | 11348 | de |
| jgu.pages.start | 11337 | de |
| jgu.publisher.doi | 10.1007/s10973-024-13625-3 | de |
| jgu.publisher.issn | 1388-6150 | de |
| jgu.publisher.name | Springer Science + Business Media B.V. | de |
| jgu.publisher.place | Dordrecht u.a. | de |
| jgu.publisher.year | 2024 | |
| jgu.rights.accessrights | openAccess | |
| jgu.subject.ddccode | 004 | de |
| jgu.subject.ddccode | 610 | de |
| jgu.subject.ddccode | 796 | de |
| jgu.subject.dfg | Naturwissenschaften | de |
| jgu.type.dinitype | Article | en_GB |
| jgu.type.resource | Text | de |
| jgu.type.version | Published version | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- thermonet___advanced_deep_neu-20250820144706599548.pdf
- Size:
- 2.3 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version