ThermoNet : advanced deep neural network-based thermogram processing pipeline for automatic time series analysis of specific skin areas in moving legs

dc.contributor.authorAndrés López, Daniel
dc.contributor.authorHillen, Barlo
dc.contributor.authorNägele, Markus
dc.contributor.authorSimon, Perikles
dc.contributor.authorSchömer, Elmar
dc.date.accessioned2025-08-20T12:47:06Z
dc.date.available2025-08-20T12:47:06Z
dc.date.issued2024
dc.date.updated2024-12-03T08:19:36Z
dc.description.abstractInfrared thermography is an emerging technique in biomedical research, potentially providing diagnostic insights into psychological stress, physical strain, muscle fatigue, inflammation, tissue damage, and diseases with thermogenic effects. However, manual analysis strategies are frequently applied causing incomparable, non-reproducible results and hampering standardization. Moreover, widely applied manual analysis cannot recognize blood vessel-related thermal radiation patterns during physical exercise. Therefore, an enhanced processing pipeline, “ThermoNet”, has been developed to automatically process thermograms captured during running. For acquisition, an automatic temperature calibration technique has been introduced to obtain reliable pixel-temperature mapping. The thermograms are semantically segmented in the processing pipeline to extract the anatomical regions of interest (ROIs) by a state-of-the-art deep neural network rather than considering both legs as a single area. A second neural network further examines the ROIs to identify different venous and arterial (perforator) patterns. Within the segments, advanced statistical features are computed to provide time series data. Separate analysis of venous and perforator vessel patterns is carried out on individual connected components, resulting in the extraction of 276 features for each thermogram. The enhanced ROI extraction achieved a high accuracy for the left and right calf on the manually annotated test set. Each step of the ThermoNet pipeline represents a significant improvement over previous analysis methods. Finally, ThermoNet is a transferable pipeline for automatic, reproducible, and objective analysis of ROIs in thermal image sequences of moving test individuals.en
dc.identifier.doihttps://doi.org/10.25358/openscience-13135
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/13156
dc.language.isoengde
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc004 Informatikde
dc.subject.ddc004 Data processingen
dc.subject.ddc610 Medizinde
dc.subject.ddc610 Medical sciencesen
dc.subject.ddc796 Sportde
dc.subject.ddc796 Athletic and outdoor sports and gamesen
dc.titleThermoNet : advanced deep neural network-based thermogram processing pipeline for automatic time series analysis of specific skin areas in moving legsen
dc.typeZeitschriftenaufsatzde
elements.object.id177389
elements.object.labelsArtificial neural networks
elements.object.labelsImage processing pipeline
elements.object.labelsPattern recognition
elements.object.labelsSemantic segmentation
elements.object.labelsThermal imaging
elements.object.labelsArtificial neural networks
elements.object.labelsImage processing pipeline
elements.object.labelsPattern recognition
elements.object.labelsSemantic segmentation
elements.object.labelsThermal imaging
elements.object.labelsDeepSpoMed
elements.object.labels0303 Macromolecular and Materials Chemistry
elements.object.labels0306 Physical Chemistry (incl. Structural)
elements.object.labels0399 Other Chemical Sciences
elements.object.labelsPhysical Chemistry
elements.object.labels3406 Physical chemistry
elements.object.typejournal-article
jgu.journal.issue19de
jgu.journal.titleJournal of thermal analysis and calorimetryde
jgu.journal.volume149de
jgu.organisation.departmentFB 02 Sozialwiss., Medien u. Sportde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7910
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end11348de
jgu.pages.start11337de
jgu.publisher.doi10.1007/s10973-024-13625-3de
jgu.publisher.issn1388-6150de
jgu.publisher.nameSpringer Science + Business Media B.V.de
jgu.publisher.placeDordrecht u.a.de
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode004de
jgu.subject.ddccode610de
jgu.subject.ddccode796de
jgu.subject.dfgNaturwissenschaftende
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thermonet___advanced_deep_neu-20250820144706599548.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format
Description:
Published version

Collections