A computational method for studying the relation between alternative splicing and DNA methylation

dc.contributor.authorZheng, Zejun
dc.contributor.authorWei, Xiaona
dc.contributor.authorHildebrandt, Andreas
dc.contributor.authorSchmidt, Bertil
dc.date.accessioned2022-10-13T09:34:35Z
dc.date.available2022-10-13T09:34:35Z
dc.date.issued2016
dc.description.abstractAlternative splicing is an important mechanism in eukaryotes that expands the transcriptome and proteome significantly. It plays an important role in a number of biological processes. Understanding its regulation is hence an important challenge. Recently, increasing evidence has been collected that supports an involvement of intragenic DNA methylation in the regulation of alternative splicing. The exact mechanisms of regulation, however, are largely unknown, and speculated to be complex: different methylation profiles might exist, each of which could be associated with a different regulation mechanism. We present a computational technique that is able to determine such stable methylation patterns and allows to correlate these patterns with inclusion propensity of exons. Pattern detection is based on dynamic time warping (DTW) of methylation profiles, a sophisticated similarity measure for signals that can be non-trivially transformed. We design a flexible self-organizing map approach to pattern grouping. Exemplary application on available data sets indicates that stable patterns which correlate non-trivially with exon inclusion do indeed exist. To improve the reliability of these predictions, further studies on larger data sets will be required. We have thus taken great care that our software runs efficiently on modern hardware, so that it can support future studies on large-scale data sets.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.identifier.doihttp://doi.org/10.25358/openscience-7983
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7998
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleA computational method for studying the relation between alternative splicing and DNA methylationen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue2de
jgu.journal.titleNucleic acids researchde
jgu.journal.volume44de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativee19de
jgu.publisher.doi10.1093/nar/gkv906de
jgu.publisher.issn1362-4962de
jgu.publisher.issn0305-1048de
jgu.publisher.nameOxford Univ. Pressde
jgu.publisher.placeOxfordde
jgu.publisher.urihttp://dx.doi.org/10.1093/nar/gkv906de
jgu.publisher.year2016
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde
opus.affiliatedHildebrandt, Andreas
opus.affiliatedSchmidt, Bertil
opus.date.modified2018-09-06T10:16:02Z
opus.identifier.opusid56551
opus.institute.number0805
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Informatikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
a_computational_method_for_st-20220925160254967.pdf
Size:
8.28 MB
Format:
Adobe Portable Document Format
Description: