Dealing with prognostic signature instability : a strategy illustrated for cardiovascular events in patients with end-stage renal disease

dc.contributor.authorBinder, Harald
dc.contributor.authorKurz, Thorsten
dc.contributor.authorTeschner, Sven
dc.contributor.authorKreutz, Clemens
dc.contributor.authorGeyer, Marcel
dc.contributor.authorDonauer, Johannes
dc.contributor.authorKraemer-Guth, Annette
dc.contributor.authorTimmer, Jens
dc.contributor.authorSchumacher, Martin
dc.contributor.authorWalz, Gerd
dc.date.accessioned2022-10-05T08:08:14Z
dc.date.available2022-10-05T08:08:14Z
dc.date.issued2016
dc.description.abstractBackground Identification of prognostic gene expression markers from clinical cohorts might help to better understand disease etiology. A set of potentially important markers can be automatically selected when linking gene expression covariates to a clinical endpoint by multivariable regression models and regularized parameter estimation. However, this is hampered by instability due to selection from many measurements. Stability can be assessed by resampling techniques, which might guide modeling decisions, such as choice of the model class or the specific endpoint definition. Methods We specifically propose a strategy for judging the impact of different endpoint definitions, endpoint updates, different approaches for marker selection, and exclusion of outliers. This strategy is illustrated for a study with end-stage renal disease patients, who experience a yearly mortality of more than 20 %, with almost 50 % sudden cardiac death or myocardial infarction. The underlying etiology is poorly understood, and we specifically point out how our strategy can help to identify novel prognostic markers and targets for therapeutic interventions. Results For markers such as the potentially prognostic platelet glycoprotein IIb, the endpoint definition, in combination with the signature building approach is seen to have the largest impact. Removal of outliers, as identified by the proposed strategy, is also seen to considerably improve stability. Conclusions As the proposed strategy allowed us to precisely quantify the impact of modeling choices on the stability of marker identification, we suggest routine use also in other applications to prevent analysis-specific results, which are unstable, i.e. not reproducible.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.identifier.doihttp://doi.org/10.25358/openscience-7828
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7843
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleDealing with prognostic signature instability : a strategy illustrated for cardiovascular events in patients with end-stage renal diseaseen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue1de
jgu.journal.titleBMC medical genomicsde
jgu.journal.volume9de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 43de
jgu.publisher.doi10.1186/s12920-016-0210-9de
jgu.publisher.issn1755-8794de
jgu.publisher.nameBioMed Centralde
jgu.publisher.placeLondonde
jgu.publisher.urihttp://dx.doi.org/10.1186/s12920-016-0210-9de
jgu.publisher.year2016
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde
opus.affiliatedBinder, Harald
opus.date.modified2018-08-23T08:38:39Z
opus.identifier.opusid56381
opus.institute.number0424
opus.metadataonlyfalse
opus.organisation.stringFB 04: Medizin: Institut für Med. Biometrie, Epidemologie und Informatikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dealing_with_prognostic_signa-20220914003115661.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description: