Multiple imputation of missing data : a simulation study on a binary response

dc.contributor.authorHardt, Jochen
dc.contributor.authorHerke, Max
dc.contributor.authorBrian, Tamara
dc.contributor.authorLaubach, Wilfried
dc.date.accessioned2022-10-05T10:05:21Z
dc.date.available2022-10-05T10:05:21Z
dc.date.issued2013
dc.description.abstractCurrently, a growing number of programs become available in statistical software for multiple imputation of missing values. Among others, two algorithms are mainly implemented: Expectation Maximization (EM) and Multiple Imputation by Chained Equations (MICE). They have been shown to work well in large samples or when only small proportions of missing data are to be imputed. However, some researchers have begun to impute large proportions of missing data or to apply the method to small samples. A simulation was performed using MICE on datasets with 50, 100 or 200 cases and four or eleven variables. A varying proportion of data (3% - 63%) was set as missing completely at random and subsequently substituted using multiple imputation by chained equations. In a logistic regression model, four coefficients, i.e. non-zero and zero main effects as well as non-zero and zero interaction effects were examined. Estimations of all main and interaction effects were unbiased. There was a considerable variance in the estimates, increasing with the proportion of missing data and decreasing with sample size. The imputation of missing data by chained equations is a useful tool for imputing small to moderate proportions of missing data. The method has its limits, however. In small samples, there are considerable random errors for all effects.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.identifier.doihttp://doi.org/10.25358/openscience-7857
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7872
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleMultiple imputation of missing data : a simulation study on a binary responseen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue5de
jgu.journal.titleOpen journal of statisticsde
jgu.journal.volume3de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end378de
jgu.pages.start370de
jgu.publisher.doi10.4236/ojs.2013.35043de
jgu.publisher.issn2161-718Xde
jgu.publisher.nameScientific Research Publ.de
jgu.publisher.placeIrvine, Calif.de
jgu.publisher.urihttp://dx.doi.org/10.4236/ojs.2013.35043de
jgu.publisher.year2013
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde
opus.affiliatedHardt, Jochen
opus.date.modified2018-07-31T09:32:55Z
opus.identifier.opusid24284
opus.institute.number0434
opus.metadataonlyfalse
opus.organisation.stringFB 04: Medizin: Klinik und Poliklinik für Psychosomatische Medizin und Psychotherapiede_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
multiple_imputation_of_missin-20220913184905001.pdf
Size:
411.84 KB
Format:
Adobe Portable Document Format
Description: