AlphaFold predicts the most complex protein knot and composite protein knots
dc.contributor.author | Brems, Maarten A. | |
dc.contributor.author | Runkel, Robert | |
dc.contributor.author | Yeates, Todd O. | |
dc.contributor.author | Virnau, Peter | |
dc.date.accessioned | 2023-02-02T10:50:42Z | |
dc.date.available | 2023-02-02T10:50:42Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The computer artificial intelligence system AlphaFold has recently predicted previously unknown three-dimensional structures of thousands of proteins. Focusing on the subset with high-confidence scores, we algorithmically analyze these predictions for cases where the protein backbone exhibits rare topological complexity, that is, knotting. Amongst others, we discovered a 71-knot, the most topologically complex knot ever found in a protein, as well several six-crossing composite knots comprised of two methyltransferase or carbonic anhydrase domains, each containing a simple trefoil knot. These deeply embedded composite knots occur evidently by gene duplication and interconnection of knotted dimers. Finally, we report two new five-crossing knots including the first 51-knot. Our list of analyzed structures forms the basis for future experimental studies to confirm these novel-knotted topologies and to explore their complex folding mechanisms. | en_GB |
dc.description.sponsorship | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577 | de |
dc.identifier.doi | http://doi.org/10.25358/openscience-8709 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/8725 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.ddc | 530 Physik | de_DE |
dc.subject.ddc | 530 Physics | en_GB |
dc.title | AlphaFold predicts the most complex protein knot and composite protein knots | en_GB |
dc.type | Zeitschriftenaufsatz | de |
jgu.journal.issue | 8 | de |
jgu.journal.title | Protein science | de |
jgu.journal.volume | 31 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.publisher.doi | 10.1002/pro.4380 | de |
jgu.publisher.issn | 1469-896X | de |
jgu.publisher.name | John Wiley & Sons, Ltd | de |
jgu.publisher.place | Hoboken, NJ | de |
jgu.publisher.year | 2022 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 530 | de |
jgu.subject.dfg | Naturwissenschaften | de |
jgu.type.contenttype | Scientific article | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Published version | de |