AlphaFold predicts the most complex protein knot and composite protein knots

dc.contributor.authorBrems, Maarten A.
dc.contributor.authorRunkel, Robert
dc.contributor.authorYeates, Todd O.
dc.contributor.authorVirnau, Peter
dc.date.accessioned2023-02-02T10:50:42Z
dc.date.available2023-02-02T10:50:42Z
dc.date.issued2022
dc.description.abstractThe computer artificial intelligence system AlphaFold has recently predicted previously unknown three-dimensional structures of thousands of proteins. Focusing on the subset with high-confidence scores, we algorithmically analyze these predictions for cases where the protein backbone exhibits rare topological complexity, that is, knotting. Amongst others, we discovered a 71-knot, the most topologically complex knot ever found in a protein, as well several six-crossing composite knots comprised of two methyltransferase or carbonic anhydrase domains, each containing a simple trefoil knot. These deeply embedded composite knots occur evidently by gene duplication and interconnection of knotted dimers. Finally, we report two new five-crossing knots including the first 51-knot. Our list of analyzed structures forms the basis for future experimental studies to confirm these novel-knotted topologies and to explore their complex folding mechanisms.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8709
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8725
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleAlphaFold predicts the most complex protein knot and composite protein knotsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue8de
jgu.journal.titleProtein sciencede
jgu.journal.volume31de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.publisher.doi10.1002/pro.4380de
jgu.publisher.issn1469-896Xde
jgu.publisher.nameJohn Wiley & Sons, Ltdde
jgu.publisher.placeHoboken, NJde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
alphafold_predicts_the_most_c-20230130153447798.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections