Measurement of the differential Drell-Yan production cross-section and application of deep convolutional neural networks on event images in the context of pileup mitigation
dc.contributor.author | Brickwedde, Bernard | |
dc.date.accessioned | 2020-09-10T08:57:25Z | |
dc.date.available | 2020-09-10T08:57:25Z | |
dc.date.issued | 2020 | |
dc.identifier.doi | http://doi.org/10.25358/openscience-5122 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/5126 | |
dc.identifier.urn | urn:nbn:de:hebis:77-openscience-457f07ef-20c4-406b-b1ce-bed889b56a082 | |
dc.language.iso | eng | de |
dc.rights | CC-BY-NC-ND-4.0 | * |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.ddc | 500 Naturwissenschaften | de_DE |
dc.subject.ddc | 500 Natural sciences and mathematics | en_GB |
dc.subject.ddc | 530 Physik | de_DE |
dc.subject.ddc | 530 Physics | en_GB |
dc.title | Measurement of the differential Drell-Yan production cross-section and application of deep convolutional neural networks on event images in the context of pileup mitigation | en_GB |
dc.type | Dissertation | de |
jgu.date.accepted | 2020-08-20 | |
jgu.description.extent | v, 199 Seiten | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 500 | de |
jgu.subject.ddccode | 530 | de |
jgu.type.dinitype | PhDThesis | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Original work | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- brickwedde_bernard-measurement_of-20200909153016448.pdf
- Size:
- 22.4 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 3.57 KB
- Format:
- Item-specific license agreed upon to submission
- Description: