Tuning the functionality of designer translating organelles with orthogonal tRNA synthetase/tRNA pairs

Loading...
Thumbnail Image

Date issued

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Reuse License

Description of rights: CC-BY-4.0
Item type: Item , ZeitschriftenaufsatzAccess status: Open Access ,

Abstract

Site-specific incorporation of noncanonical amino acids (ncAAs) can be realized by genetic code expansion (GCE) technology. Different orthogonal tRNA synthetase/tRNA (RS/tRNA) pairs have been developed to introduce a ncAA at the desired site, delivering a wide variety of functionalities that can be installed into selected proteins. Cytoplasmic expression of RS/tRNA pairs can cause a problem with background ncAA incorporation into host proteins. The application of orthogonally translating organelles (OTOs), inspired by the concept of phase separation, provides a solution for this issue in mammalian cells, allowing site-specific and protein-selective ncAA incorporation. So far, only Methanosarcina mazei (Mm) pyrrolysyl-tRNA synthetase (PylRS) has been used within OTOs, limiting the method’s potential. Here, we explored the implementation of four other widely used orthogonal RS/tRNA pairs with OTOs, which, to our surprise, were unsuccessful in generating mRNA-selective GCE. Next, we tested several experimental solutions and developed a new chimeric phenylalanyl-RS/tRNA pair that enables ncAA incorporation in OTOs in a site-specific and protein-selective manner. Our work reveals unaccounted design constraints in the spatial engineering of enzyme functions using designer organelles and presents a strategy to overcome those in vivo. We then discuss current limitations and future directions of in-cell engineering in general and protein engineering using GCE specifically.

Description

Keywords

Citation

Published in

Journal of molecular biology, 436, 21, Elsevier, Amsterdam, 2024, https://doi.org/10.1016/j.jmb.2024.168728

Relationships

Collections

Endorsement

Review

Supplemented By

Referenced By