Sequence determinants of protein phase separation and recognition by protein phase-separated condensates through molecular dynamics and active learning

dc.contributor.authorChangiarath, Arya
dc.contributor.authorArya, Aayush
dc.contributor.authorXenidis, Vasileios A.
dc.contributor.authorPadeken, Jan
dc.contributor.authorStelzl, Lukas S.
dc.date.accessioned2025-01-09T11:01:23Z
dc.date.available2025-01-09T11:01:23Z
dc.date.issued2024
dc.description.abstractElucidating how protein sequence determines the properties of disordered proteins and their phase-separated condensates is a great challenge in computational chemistry, biology, and biophysics. Quantitative molecular dynamics simulations and derived free energy values can in principle capture how a sequence encodes the chemical and biological properties of a protein. These calculations are, however, computationally demanding, even after reducing the representation by coarse-graining; exploring the large spaces of potentially relevant sequences remains a formidable task. We employ an “active learning” scheme introduced by Yang et al. (bioRxiv, 2022, https://doi.org/10.1101/2022.08.05.502972) to reduce the number of labelled examples needed from simulations, where a neural network-based model suggests the most useful examples for the next training cycle. Applying this Bayesian optimisation framework, we determine properties of protein sequences with coarse-grained molecular dynamics, which enables the network ten_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-11209
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/11230
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleSequence determinants of protein phase separation and recognition by protein phase-separated condensates through molecular dynamics and active learningen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleFaraday discussionsde
jgu.journal.volumeVersion of Record (VoR)de
jgu.organisation.departmentFB 10 Biologiede
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7970
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.publisher.doi10.1039/D4FD00099Dde
jgu.publisher.issn1364-5498de
jgu.publisher.nameRoyal Society of Chemistryde
jgu.publisher.placeCambridgede
jgu.publisher.year2024
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.subject.ddccode570de
jgu.subject.dfgNaturwissenschaftende
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sequence_determinants_of_prot-20250109120011169.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections