A map of the lipid–metabolite–protein network to aid multi-omics integration

dc.contributor.authorAnyaegbunam, Uchenna Alex
dc.contributor.authorVagiona, Aimilia-Christina
dc.contributor.authorten Cate, Vincent
dc.contributor.authorBauer, Katrin
dc.contributor.authorSchmidlin, Thierry
dc.contributor.authorDistler, Ute
dc.contributor.authorTenzer, Stefan
dc.contributor.authorAraldi, Elisa
dc.contributor.authorBindila, Laura
dc.contributor.authorWild, Philipp
dc.contributor.authorAndrade-Navarro, Miguel A.
dc.date.accessioned2025-11-21T12:55:05Z
dc.date.issued2025
dc.description.abstractThe integration of multi-omics data offers transformative potential for elucidating complex molecular mechanisms underlying biological processes and diseases. In this study, we developed a lipid–metabolite–protein network that combines a protein–protein interaction network and enzymatic and genetic interactions of proteins with metabolites and lipids to provide a unified framework for multi-omics integration. Using hyperbolic embedding, the network visualizes connections across omics layers, accessible through a user-friendly Shiny R (version 1.10.0) software package. This framework ranks molecules across omics layers based on functional proximity, enabling intuitive exploration. Application in a cardiovascular disease (CVD) case study identified lipids and metabolites associated with CVD-related proteins. The analysis confirmed known associations, like cholesterol esters and sphingomyelin, and highlighted potential novel biomarkers, such as 4-imidazoleacetate and indoleacetaldehyde. Furthermore, we used the network to analyze empagliflozin’s temporal effects on lipid metabolism. Functional enrichment analysis of proteins associated with lipid signatures revealed dynamic shifts in biological processes, with early effects impacting phospholipid metabolism and long-term effects affecting sphingolipid biosynthesis. Our framework offers a versatile tool for hypothesis generation, functional analysis, and biomarker discovery. By bridging molecular layers, this approach advances our understanding of disease mechanisms and therapeutic effects, with broad applications in computational biology and precision medicine.en
dc.identifier.doihttps://doi.org/10.25358/openscience-13004
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/13025
dc.language.isoeng
dc.rightsCC-BY-4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 Biowissenschaftende
dc.subject.ddc570 Life sciencesen
dc.subject.ddc610 Medizinde
dc.subject.ddc610 Medical sciencesen
dc.titleA map of the lipid–metabolite–protein network to aid multi-omics integrationen
dc.typeZeitschriftenaufsatz
jgu.identifier.uuid10d10852-ba82-43f1-9a7f-1b912a08786a
jgu.journal.issue4
jgu.journal.titleBiomolecules
jgu.journal.volume15
jgu.organisation.departmentFB 10 Biologie
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7970
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative15040484
jgu.publisher.doi10.3390/biom15040484
jgu.publisher.issn2218-273X
jgu.publisher.nameMDPI
jgu.publisher.placeBasel
jgu.publisher.year2025
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570
jgu.subject.ddccode610
jgu.subject.dfgLebenswissenschaften
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionPublished version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
a_map_of_the_lipidmetabolitep-20251121135505046398.pdf
Size:
6.98 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.14 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections