Combining techniques for screening and evaluating interaction terms on high-dimensional time-to-event data

dc.contributor.authorHoffmann, Isabell
dc.contributor.authorSariyar, Murat
dc.contributor.authorBinder, Harald
dc.date.accessioned2022-09-14T08:32:54Z
dc.date.available2022-09-14T08:32:54Z
dc.date.issued2014
dc.description.abstractBACKGROUND: Molecular data, e.g. arising from microarray technology, is often used for predicting survival probabilities of patients. For multivariate risk prediction models on such high-dimensional data, there are established techniques that combine parameter estimation and variable selection. One big challenge is to incorporate interactions into such prediction models. In this feasibility study, we present building blocks for evaluating and incorporating interactions terms in high-dimensional time-to-event settings, especially for settings in which it is computationally too expensive to check all possible interactions. RESULTS: We use a boosting technique for estimation of effects and the following building blocks for pre-selecting interactions: (1) resampling, (2) random forests and (3) orthogonalization as a data pre-processing step. In a simulation study, the strategy that uses all building blocks is able to detect true main effects and interactions with high sensitivity in different kinds of scenarios. The main challenge are interactions composed of variables that do not represent main effects, but our findings are also promising in this regard. Results on real world data illustrate that effect sizes of interactions frequently may not be large enough to improve prediction performance, even though the interactions are potentially of biological relevance. CONCLUSION: Screening interactions through random forests is feasible and useful, when one is interested in finding relevant two-way interactions. The other building blocks also contribute considerably to an enhanced pre-selection of interactions. We determined the limits of interaction detection in terms of necessary effect sizes. Our study emphasizes the importance of making full use of existing methods in addition to establishing new ones.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.identifier.doihttp://doi.org/10.25358/openscience-7761
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7776
dc.language.isoengde
dc.rightsCC-BY-2.0*
dc.rights.urihttps://creativecommons.org/licenses/by/2.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleCombining techniques for screening and evaluating interaction terms on high-dimensional time-to-event dataen_GB
dc.typeZeitschriftenaufsatzde
jgu.identifier.pmid24571520
jgu.journal.titleBMC bioinformaticsde
jgu.journal.volume15de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 58de
jgu.publisher.doi10.1186/1471-2105-15-58de
jgu.publisher.issn1471-2105de
jgu.publisher.nameBioMed centralde
jgu.publisher.placeLondonde
jgu.publisher.urihttp://dx.doi.org/10.1186/1471-2105-15-58de
jgu.publisher.year2014
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde
opus.affiliatedHoffmann, Isabell
opus.affiliatedBinder, Harald
opus.date.modified2018-08-08T08:51:30Z
opus.identifier.opusid27354
opus.importsourcepubmed
opus.institute.number0424
opus.metadataonlyfalse
opus.organisation.stringFB 04: Medizin: Institut für Med. Biometrie, Epidemologie und Informatikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
combining_techniques_for_scre-20220913200022146.pdf
Size:
1002.18 KB
Format:
Adobe Portable Document Format
Description: