Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, Miao-
dc.contributor.authorHeidari, Maziar-
dc.contributor.authorMikhaleva, Sofya-
dc.contributor.authorTan, Piau Siong-
dc.contributor.authorMingu, Sara-
dc.contributor.authorRuan, Hao-
dc.contributor.authorReinkemeier, Christopher D.-
dc.contributor.authorObarska-Kosinska, Agnieszka-
dc.contributor.authorSiggel, Marc-
dc.contributor.authorBeck, Martin-
dc.contributor.authorHummer, Gerhard-
dc.contributor.authorLemke, Edward A.-
dc.date.accessioned2023-11-21T08:20:32Z-
dc.date.available2023-11-21T08:20:32Z-
dc.date.issued2023-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9700-
dc.description.abstractThe approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol1. The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs)2,3. Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs—about 50 MDa—is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence4,5,6,7,8,9,10,11. Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides—in the terminology of the Flory polymer theory12—a ‘good solvent’ environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder–function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.de_DE
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleVisualizing the disordered nuclear transport machinery in situen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-9682-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 10 Biologiede
jgu.organisation.number7970-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNaturede
jgu.journal.volume617de
jgu.pages.start162de
jgu.pages.end169de
jgu.publisher.year2023-
jgu.publisher.nameNature Publ. Groupde
jgu.publisher.placeLondon u.a.de
jgu.publisher.issn1476-4687de
jgu.publisher.issn0028-0836de
jgu.organisation.placeMainz-
jgu.subject.ddccode570de
jgu.publisher.doi10.1038/s41586-023-05990-0de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
visualizing_the_disordered_nu-20231120095159488.pdfVisualizing the disordered nuclear transport machinery in situ12.45 MBAdobe PDFView/Open