Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9525
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Pei-Zhe-
dc.contributor.authorLoock, Peter van-
dc.date.accessioned2023-09-12T08:56:44Z-
dc.date.available2023-09-12T08:56:44Z-
dc.date.issued2023-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9543-
dc.description.abstractA quantum repeater scheme based on cavity-quantum electrodynamics (QED) and quantum error correction of channel loss via rotation-symmetric bosonic codes (RSBCs) is proposed to distribute atomic entangled states over long distances without memories and at high clock rates. In this scheme, controlled rotation gates, i.e., phase shifts of the propagating light modes conditioned upon the state of an atom placed in a cavity, provide a mechanism both for the entangled-state preparations and for the error syndrome identifications. In order to assess the performance of this repeater protocol, an explicit instance of RSBCs—multicomponent cat codes—are studied quantitatively. It is found that the total fidelity and the success probability for quantum communication over a long distance (such as 1000 km) both can almost approach unity provided a small enough elementary distance between stations (smaller than 0.1 or 0.01 km) and rather low local losses (up to 0.1%) are considered. In a quantum key distribution application, secret key rates can become correspondingly high, both per channel use, beating the repeaterless bound, and per second thanks to the relatively high clock rates of the memoryless scheme. Based upon the cavity-QED setting, this scheme can be realized at room temperature and at optical frequencies.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin-
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleMemoryless quantum repeaters based on cavity-QED and coherent statesen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-9525-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleAdvanced quantum technologiesde
jgu.journal.volume6de
jgu.journal.issue8de
jgu.pages.alternative2200151de
jgu.publisher.year2023-
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.issn2511-9044de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1002/qute.202200151de
jgu.organisation.rorhttps://ror.org/023b0x485-
jgu.subject.dfgLebenswissenschaftende
Appears in collections:DFG-491381577-H

Files in This Item:
  File Description SizeFormat
Thumbnail
memoryless_quantum_repeaters_-20230901153440391.pdf1.88 MBAdobe PDFView/Open