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Memoryless Quantum Repeaters Based on Cavity-QED and
Coherent States

Pei-Zhe Li* and Peter van Loock*

A quantum repeater scheme based on cavity-quantum electrodynamics (QED)
and quantum error correction of channel loss via rotation-symmetric bosonic
codes (RSBCs) is proposed to distribute atomic entangled states over long
distances without memories and at high clock rates. In this scheme,
controlled rotation gates, i.e., phase shifts of the propagating light modes
conditioned upon the state of an atom placed in a cavity, provide a mechanism
both for the entangled-state preparations and for the error syndrome
identifications. In order to assess the performance of this repeater protocol,
an explicit instance of RSBCs—multicomponent cat codes—are studied
quantitatively. It is found that the total fidelity and the success probability for
quantum communication over a long distance (such as 1000 km) both can
almost approach unity provided a small enough elementary distance between
stations (smaller than 0.1 or 0.01 km) and rather low local losses (up to 0.1%)
are considered. In a quantum key distribution application, secret key rates can
become correspondingly high, both per channel use, beating the repeaterless
bound, and per second thanks to the relatively high clock rates of the
memoryless scheme. Based upon the cavity-QED setting, this scheme can be
realized at room temperature and at optical frequencies.
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1. Introduction

One of the key topics in quantum informa-
tion processing recently is quantum com-
munication over long distances, beyond
what is achievable in a so-called point-to
point link via direct optical state transmis-
sion. In order to obtain high fidelities and
rates (or secret key rates in quantumkey dis-
tribution (QKD)), the exponential decrease
of these quantities with distance, caused by
the lossy bosonic channel (LBC) represent-
ing an optical fiber, must be suppressed.
The most common and best known ap-
proach to remedy this fundamental scaling
problem of fiber-based quantum commu-
nication is the so-called quantum repeater
in which an otherwise long-distance point-
to-point communication channel is divided
into shorter segments.[1,2] The intermediate
repeater stations are then equipped with
stationary matter qubits that can couple
to the incoming, flying photonic qubits,
temporarily store and release them. Based
on this, the typically heralded distribution

of entangled photon pairs can be synchronized among all the re-
peater segments and these short-distance pairs can then be con-
nected via quantum teleportation (entanglement swapping). In
order for this scheme to be really scalable to larger distances, ad-
ditional steps of entanglement distillation are needed to suppress
the accumulation of memory and gate errors.
This standard quantum repeater based on quantum memo-

ries and probabilistic entanglement distillation, though scalable
in principle, has a couple of complications. While the require-
ment of an efficient, long-lasting quantum memory system is of
more technical, experimental nature, a more conceptual and fun-
damental issue is the need for two-way classical communication
in such repeaters, even over distances beyond those of the ele-
mentary segment lengths, significantly limiting the possible final
rates. The use of quantum error correction codes for the matter
qubits allows to circumvent the need for probabilistic operations
on higher nesting levels of a quantum repeater link and hence
for any two-way classical communication between non-nearest
repeater stations.[3] While this approach helps to enhance the fi-
nal rates in principle, it still requires quantum memories and
two-way classical communication for the initial encoded, entan-
gled state distributions and distillations. Instead, a more recent
concept would rather avoid the need for quantummemories and
two-way classical communication entirely by minimizing the ef-
fect of the LBC through certain optical encodings, i.e., photonic
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or, more generally, bosonic quantum error correction codes that
protect a bosonic mode from loss.[4] In this case, the clock rate
of the repeater scheme is no longer determined by any classical-
signal waiting times, but solely depends on the longest time dura-
tion required for the local processing at any repeater station. The
motivation of this work is to propose and assess a similar, mem-
oryless repeater scheme for long-distance quantum communica-
tionmaking use of “Schrödinger cat states” for bosonic quantum
error correction (QEC) in order to improve the fidelities and the
rates.
The cat code[5] is a prime example of a bosonic code where a

logical qubit is encoded in an oscillator mode. Thus, it is some-
times also referred to as an instance of a continuous-variable
(CV) code. It has been proposed in particular to correct photon
loss occurring on the bosonic mode exploiting certain photon
number parity properties of suitable cat states. With the help of
cavity-quantum error distribution (QED), cat states can be deter-
ministically generated at room temperature in the laboratory.[6]

Our work is especially based on the idea that the experimental
scheme[6] could not only be used to generate (atom–light entan-
gled) cat states, but also to do the syndrome detections for cat
code error correction. Using this method, it is possible to con-
struct a model of quantum repeaters that do not require any
memories or two-way classical communications. More generally,
it is possible to extend the simplest instance of such a scheme
to create multicomponent cat states, which can be used for quan-
tum error correction with higher-loss cat codes.[7,8] There also ex-
ists a more general class of quantum states and codes compared
to that of multicomponent cat states or codes. These more gen-
eral codes are referred to as “rotation-symmetric bosonic codes”
(RSBCs) and they exhibit, like the “cat states”, rotational sym-
metries in phase space.[9] We will argue that, in principle, all
the above-mentioned operations for “cat states” also work for the
generalized class of states. First, we can physically prepare these
states in the lab given that we are able to create a correspond-
ing “primitive state”, which is useful in the context of quantum
computing.[9] Second, these states are also potentially useful in
long-distance quantum communication in the same way as the
cat codes. Nonetheless, here our quantitative analysis will focus
on cat codes and we shall not explicitly assess the performance
of the generalized states, even though they could help to enhance
the performance beyond that of cat codes. For the cat codes, how-
ever, we will systematically derive and quantitatively assess in-
stances of the higher-order loss codes[7,8] spanned by more than
those four distinct coherent states as for the original one-loss cat
code.[5] While there are all-optical proposals for state generation
and error correction with four coherent states,[10–12] it is unclear
whether and how these are extendible to the regime of higher-
loss codes with more coherent states.
Compared with most existing schemes for fast, memoryless

quantum communication or so-called 3rd-generation quantum
repeaters[4] where logical qubits are encoded in many physical,
photonic qubits, and twice as many optical modes, our scheme
is particularly “hardware-efficient” from the perspective of optics
by exploiting bosonic single-mode codes that are sent through
the fiber channel. To some extent, this concept has already been
explored,[7,8] but an explicit optical realization has not been con-
sidered yet. Other existing approaches for fast, long-distance
quantum communication rely upon a different, shift-invariant

class of bosonic codes that also encode logical qubits into oscilla-
tor modes,[13] but partially also make use of concatenations with
higher-level qubit codes.[14,15] An experimental complication in
these schemes, however, is that it is even hard to create the cor-
responding low-level code states in the optical regime, although
also for this proposals based on cavity-QED exist.[16] For logical
qubits encoded into cat states, it may also be useful to protect
the cat qubits through higher-level qubit quantum error correc-
tion codes.[12,17,18] While this can lead to a further improvement
of the possible (secret key) rates, it would also render the state
generations and encoding circuits more complicated and, by re-
lying upon many optical modes for the total code states, it would
go beyond the efficient bosonic single-mode encoding and trans-
mission.
Our cat code repeater scheme, though functioning without

qubit storage and two-way classical communication, does require
atomic qubits at each repeater station for the local state prepa-
rations and the error correction operations. Therefore, it cannot
simply be operated at the potentially very fast clock rate of a laser
source or an optical quantum state preparation device. Instead,
the elementary time units of our scheme are determined by the
speed of the local atom–light operations (typically operating at
MHz rates). Another limiting factor will be the small repeater
spacing, which is required for the bosonic quantum error cor-
rection that works best at sufficiently small channel loss. In this
case, the local experimental imperfections of the atom–light sys-
tem at each repeater station will accumulate more heavily. Here
we model these local imperfections of the cavity-QED system at
each station as an additional constant loss which primarily in-
cludes atomic loss (spontaneous decay) and coupling inefficien-
cies between the cavity-QED and fiber communication systems.
There is no time dependence of the local loss, since it is not asso-
ciated with a variable memory decay in our memoryless scheme.
Nonetheless, local loss is a bottle neck in our scheme, because it
must be very small in order to allow for the frequent error cor-
rection steps along the channel in our cavity-QED-based repeater
scheme.

2. Background and Methods

In this section, we present some background material and meth-
ods as needed for our quantum communication scheme. This
includes some notions and specific interactions of cavity-QED,
cavity-QED-based procedures to create entangled atom–light and
eventually atom–atom states and also to do syndrome measure-
ments for quantum error correction. We shall also discuss the
effect of loss channels on these entangled states.

2.1. Methods from Cavity-QED

It has been shown both in theory[19,20] and in experiment[6] that
so-called even or odd cat states (quantum superposition of optical
coherent states) can be generated with the help of a high-finesse
cavity containing a single trapped atom. The trapped atom con-
sists of three relevant levels. Two of them are the ground state,|↑⟩ and |↓⟩, the remaining one is the excited state, |e⟩. The tran-
sition |↑⟩→ |e⟩ is strongly coupled to the bare cavity mode. The
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transition |↓⟩→ |e⟩ is decoupled from the cavity mode because
of the energy gap between the two (hyperfine and, possibly, Zee-
man) ground states. Then one may consider the scenario that an
input light field, which is resonant with the cavity mode is re-
flected from the cavity. If the atom is prepared in state |↑⟩, then
due to the strong coupling of the cavity and the atom, the fre-
quency of the dressed cavity mode will be significantly detuned
from that of the input light. In this case the reflection becomes
similar to the reflection from a mirror, which keeps the input
state of light unchanged. If the atom is prepared in state |↓⟩, the
input light mode is strongly coupled with the cavity mode, so af-
ter the reflection, the output mode will acquire an extra phase of
ei𝜋 . However, if the light mode is not perfectly resonant with the
cavity mode, i.e., there is a photon energy/frequency detuning Δ
between them, the extra phase becomes different from ei𝜋 . Ac-
cording to the quantum optics calculation, the relation between
the input and the output light mode operators is[19]

âout ≈
i𝜋Δ − 𝜅

2

i𝜋Δ + 𝜅

2

âin, (1)

where 𝜅 is the cavity decay rate. This relation corresponds to the
rotation operator

R̂ (𝜙) = exp (i𝜙n̂) (2)

acting on the state of the input light mode, where n̂ = â† â
is the photon number operator and the rotation angle 𝜙 =
arg((i𝜋Δ − 𝜅

2
)∕(i𝜋Δ + 𝜅

2
) ) . With this quantum gate for optical

modes, we are able to create states with rotational symmetries.
Moreover, as explained in detail below, for quantum error cor-
rection using certain suitably encoded states, this operation can
extract information that tells us which error space a state belongs
to. This kind of information is part of the syndrome measure-
ment, which is crucial to enhance fidelities when the states are
subject to errors. Finally, this provides a possibility to generate en-
tanglement probabilistically after an appropriate measurement,
for instance, via unambiguous state discrimination (USD) or ho-
modyne detection.
In experiments, there are more parameters related to the ro-

tation angle 𝜙 and the amplitude will be damped slightly after
the reflection because of the inevitable losses.[6] The respective
complex reflection amplitude r including additional parameters
is[6]

r (Δ) = 1 −
2𝜅r (2i𝜋Δ + 𝛾)

(2i𝜋Δ + 𝜅) (2i𝜋Δ + 𝛾) + g2
. (3)

where 𝜅r∕𝜅 is the reduced escape efficiency of the cavity, which
does not reflect all of the incoming light (due to optical scat-
tering into modes distinct from the reflected target mode).
The parameter 𝛾 is the atomic dipole decay rate and g is the
atom-cavity coupling constant. Then the relative phase shift
is given by 𝜙 (Δ) = arg(r(Δ)|g=0) − arg(r(Δ)|g =g0 ),[6] where g0 =
2𝜋 × 7.8 MHz is the value of g for the coupling case.[6] We set
these parameters to be the same as given by Hacker et al.[6] in
Figure 1 for what we call the “practical” curves.
Based on this, let us briefly discuss the different regimes for

the conditional phase rotation depending on the experimental pa-

rameters including, especially, the chosen regime for the detun-
ing. Importantly, we shall argue that for our repeater scheme to
be operated using these interactions from cavity-QED, all cavi-
ties can be employed in a regime where the rotation angle 𝜙 is
between 𝜋∕2 and 𝜋. In this case, the simple theoretical model
matches recent experiments[6] and amplitude damping can be
avoided to a great extent.
From Figure 1a, one can see that with proper parameters (to

bemore specific, it is required that g2 ≫ 𝜅𝛾 , 𝜅r ≈ 𝜅, and−3MHz
< Δ < 3 MHz), a phase shift between 𝜋∕2 and 3𝜋∕2 can be
reached and the “practical” and idealized theoretical (without am-
plitude damping) curves basically coincide. Later, in order to de-
scribe our repeater protocol, initially we will assume perfect lo-
cal operations (no local loss) and subsequently, in the rate analy-
sis part, we will also consider the local losses including the am-
plitude damping as represented by Equation (3). Figure 1 fur-
ther illustrates and implies (see Figure 1b,c) that, both for the
theoretical approximation and in practice (“practical”), in order
to get a small phase shift approaching zero, one needs a rather
large detuning, beyond 7 MHz. In this regime, the theoretical
and “practical” curves no longer coincide, although both give de-
creasing phase shifts approaching zero with large detuning. This
general behavior can also be inferred from the theoretical expres-
sion for the rotation angle 𝜙 = arg((i𝜋Δ − 𝜅

2
)∕(i𝜋Δ + 𝜅

2
) ) . Re-

lated with these discrepancies, at around Δ = 7.5 MHz the “prac-
tical” scheme can lead to a significantly reduced amplitude of the
scattered light field (see Figure 1c). Even though the phase shift
can be small and close to zero when Δ ≈ 7.5 MHz in “practical”,
the modulus of the amplitude for the coupling case (g = g0 ) be-
comes too small with this value ofΔ. When the detuning reaches
15 MHz or beyond, small phase shifts in combination with an
invariant amplitude (no amplitude reduction) can always be ob-
tained (in both practice and theory). However, we stress that
such a large detuning is unnecessary for our repeater scheme to
work. While we should certainly avoid the Δ-regime in the range
3 MHz < Δ < 10 MHz, based on the above discussion, we could
choose between the regimes −3 MHz < Δ < 3 MHz and, e.g.,
Δ > 10 MHz. Avoiding the use of too large detuning, it may then
be more feasible experimentally to have Δ in the range of 0 MHz
< Δ < 3 MHz with phase shifts near 𝜋∕2 and bigger, up to 𝜋.
In the following, however, for simplicity, we make use of cavities
with a rotation angle𝜙 smaller than 𝜋∕2. Thanks to the rotational
symmetry of the RSBCs considered in this paper, the use of a cav-
ity with rotation angle 𝜙 is equivalent to the use of a cavity with
rotation angle 𝜋 − 𝜙 in our repeater scheme (details are given in
Section S2, Supporting Information). Therefore, all cavities can
be replaced by those with 𝜙 bigger than 𝜋∕2 and smaller than
𝜋, which is precisely the regime that works very well according
to the above discussion. Thus, all the arguments in this section
are still valid, provided the discussions here and as presented in
Section S2 of the Supporting Information are taken into account
with regards to real experiments.
In the next three subsections, we first consider only a single

repeater segment to do the quantum error correction and finally
create the entanglement. Quantum memories may be present at
the station that sends the light mode (Alice). If we want to cre-
ate entanglement shared between Alice and Bob and keep it for
certain applications, we need another quantum memory at the
station receiving the light mode (Bob). However, in our final,

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (3 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202200151 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [01/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 1. a,b) The phase shift caused by the light–matter interaction as a function of the photon energy/frequency detuning Δ. The orange curve is
the theoretical approximation which keeps the modulus of the amplitude unchanged. The blue curve is more accurate, including more experimental
(“practical”) parameters, but in this case the amplitude can be reduced. c) The corresponding modulus of the reflection amplitudes with g = 0 and
g = g0 = 2𝜋 × 7.8 MHz.

complete quantum repeater scheme, connecting many such el-
ementary segments, the overall procedure can be done without
quantum memories and only the entangled pairs in Alice and
Bob’s hands may be kept. When the specific application is QKD,
Alice’s atom can be measured once the desired code states are
available at the station sending the light mode. Similarly, also
Bob’s atom can be measured immediately after all the necessary
light–atom interactions at the station receiving the light mode.
So, no quantum memories are needed at all (even for Alice and
Bob) for QKD. Our theoretical analysis and all derivations are in-
dependent of the particular choice of application (see Section 3.1
and Section S7 (Supporting Information) for details). Hence it
works for both long-range QKD and applications that rely on
long-distance stationary entanglement distribution between Al-
ice and Bob.

2.2. State Preparation

The cavity-QED-based, detuning-dependent phase rotation
method as described in Section 2.1 provides a realization for a
kind of “hybrid controlled rotation gate”. Here “hybrid” means
that the controlling part is the atomic state and the target part
is the light mode, and so the gate performs a hybrid operation
between the atomic state and the incident light mode. Similarly,
the gate is expressible by discrete-variable qubit operators acting
on the atom and CV oscillator (“qumode”) operators acting

on the light field mode. With the help of this gate, we can
easily generate states with discrete rotation symmetry. First, we
prepare the atom as mentioned above in a superposition of the
two ground states, (|↑⟩ + |↓⟩)∕√2, and then reflect an arbitrary
light-mode state |Θ⟩ from the cavity. Then, as mentioned before,
the light-mode state |Θ⟩ will be either rotated in phase space or
remain the same depending on the state of the atom either in|↑⟩ or |↓⟩
|↑⟩|Θ⟩→ |↑⟩|Θ⟩,|↓⟩|Θ⟩→ |↓⟩R̂(𝜙)|Θ⟩. (4)

This action can be formally expressed as a hybrid controlled
rotation (hCROT) gate acting jointly on an atomic and a light-
mode input state

hCROT𝜙 = |↑⟩ ⟨↑|⊗ 1̂ + |↓⟩ ⟨↓|⊗ exp
(
i𝜙n̂

)
. (5)

To create a state of light with 2m-fold rotation symmetry (2m-
fold as adapted to our specific encoded state preparationmethod),
at first we need to set the rotation angle 𝜙 = 𝜋, which can be
realized by setting the detuning Δ = 0. Thus, after the first re-
flection, the state becomes

1√
2

(|↑⟩ |Θ⟩ + |↓⟩ R̂ (𝜋) |Θ⟩) , (6)
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so the atom and the light mode become entangled. We can then
rewrite the state

1√
2

(|↑⟩ |Θ⟩ + |↓⟩ R̂ (𝜋) |Θ⟩)
= 1
2

[
1√
2
(|↑⟩ + |↓⟩)(|Θ⟩ + R̂ (𝜋) |Θ⟩)

+ 1√
2
(|↑⟩ − |↓⟩)(|Θ⟩ − R̂ (𝜋) |Θ⟩)] .

(7)

Next, after doing a projective measurement of the atomic
state in the basis {|±⟩ = (|↑⟩ ± |↓⟩) ∕√2}, the state of light will
be projected onto a superposition of |Θ⟩ and the rotated state
R̂(𝜋)|Θ⟩, i.e., |Θ⟩ ± R̂(𝜋)|Θ⟩ (unnormalized). This step has al-
ready been realized in the lab with |Θ⟩ = |𝛼⟩ , generating the
even or odd “cat states” (|𝛼⟩ ± |−𝛼⟩)∕N±, where N± is the nor-
malization constant.[6] As a next step, we adjust the cavity (or pre-
pare another cavity) to make the detuning Δ = 𝜅∕2, so the rota-
tion angle 𝜙 becomes 𝜋∕2, and we prepare the atom inside again
in the state (|↑⟩ + |↓⟩)∕√2. Assuming we obtain |Θ⟩ + R̂(𝜋)|Θ⟩
from the first step, then if we reflect this state again from the
adjusted cavity (or another cavity), we will get the light state

|Θ⟩ + R̂ (𝜋) |Θ⟩ ± R̂
(
𝜋

2

) |Θ⟩ ± R̂
(3𝜋
2

) |Θ⟩ (8)

after the projectivemeasurement of the atomic state similar to the
first step.[21] Repeating the steps above and adjusting the cavity
(or preparing another cavity) in every step with the rotation angle
𝜙 being half of the angle from the previous step, finally, the joint
atom–light state (before the atomic measurement) will become

1√
2

(|↑⟩ ||02m,Θ⟩ + |↓⟩ ||12m,Θ⟩) , (9)

∀m ∈ N0 after m + 1 steps, where

||0M,Θ⟩ = 1√
NM

M−1∑
k = 0

R̂
(
2k𝜋
M

) |Θ⟩,
||1M,Θ

⟩
= 1√

NM

M−1∑
k = 0

R̂
(
(2k + 1)𝜋

M

) |Θ⟩, (10)

with a normalization constant NM. The two states |0M,Θ⟩ and|1M,Θ⟩ are the logical codewords used in our scheme. Both of
them exhibit rotation symmetry, i.e.,

R̂
(2𝜋
M

) ||0M,Θ⟩ = ||0M,Θ⟩ ,
R̂
(2𝜋
M

) ||1M,Θ⟩ = ||1M,Θ⟩ . (11)

Equation (10) is the general definition of the two codewords
of a rotation-symmetric bosonic qubit code for any integer M.
However, according to Equation (9), the above method can only
generate states forM = 2m .
Here the codewords are generally not orthogonal, ⟨0M,Θ |

1M,Θ⟩ ≠ 0. Nevertheless, the logical codewords can also be con-

structed to be orthogonal.[9] For example, the two orthogonal
states |Θ⟩ + R̂(𝜋)|Θ⟩ and |Θ⟩ − R̂(𝜋)|Θ⟩ (unnormalized) in Equa-
tion (7) can also be used as the codewords. Although the orthog-
onal codewords can be discriminated deterministically (at least
in theory), they cannot lead to a deterministic entanglement cre-
ation process, because one has to add two different normaliza-
tion constants to normalize the two states and the difference will
finally make the process probabilistic again. A more detailed dis-
cussion can be found in Section S3 of the Supporting Informa-
tion.

2.3. Syndrome Measurement

QEC is essential to suppress the errors, in our case, primarily
related with the LBC. In order to correct the errors, a syndrome
measurement is necessary, which extracts the error information
from the encoded state.
After preparing the state in Equation (9) in the desired loss

order (the loss order L = 2m − 1 for |0M,Θ⟩ and |1M,Θ⟩.), “Alice”
transmits the light mode via an optical fiber.[22] Inevitably, some
photons will get lost during the transmission. Before consider-
ing the full loss channel, it is conceptually useful to first think of
a simplified loss channel, where we only apply the annihilation
operator â to the codewords. The number of losses then corre-
sponds to the powers of â. The resulting state becomes

1√
2

(|↑⟩Aâq ||02m,Θ + |↓⟩Aâq ||12m,Θ ) (12)

if q photons are lost. Here | ↑A and | ↓A represent the atomic state
held by Alice. Analogously to the generation of this state, we also
do the syndrome measurement with the help of a cavity. We ad-
just the cavity with the rotation angle 𝜙 = 𝜋∕2m−1 and the state
of the atom inside is prepared to be (| ↑s + | ↓s)∕√2. When we
reflect the light mode after the transmission from this cavity, the
joint atom–light state becomes

1
2
|↑⟩s (|↑⟩Aâq||02m,Θ⟩ + |↓⟩Aâq ||12m,Θ⟩)
+1
2
|↓⟩s (|↑⟩AR̂( 𝜋

2m−1

)
âq||02m,Θ⟩ + |↓⟩AR̂( 𝜋

2m−1

)
âq ||12m,Θ⟩) ,

(13)

where | ↑s and | ↓s represent the state of the ancillary atom inside
the cavity used for the syndrome measurement. There is a rela-
tion of the rotation operator R̂(𝜙) and the annihilation operator
â

R̂ (𝜙) âq = R̂ (𝜙) âqR̂† (𝜙) R̂ (𝜙) =
(
R̂ (𝜙) âR̂† (𝜙)

)q
R̂ (𝜙)

=
(
e−i𝜙â

)q
R̂ (𝜙) = e−iq𝜙 âqR̂ (𝜙) .

(14)

Also, according to Equation (11), we have

R̂
(

𝜋

2m−1

) ||02m,Θ⟩ = ||02m,Θ⟩,
R̂
(

𝜋

2m−1

) ||12m,Θ⟩ = ||12m,Θ⟩ . (15)
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Then Equation (13) can be rewritten as

1
2

(|↑⟩s + e−
iq𝜋

2m−1 |↓⟩s) (|↑⟩Aâq||02m,Θ⟩ + |↓⟩Aâq ||12m,Θ⟩) , (16)

which is a product of the atomic state (| ↑⟩s +
exp(−iq𝜋∕2m−1)| ↓⟩s)∕√2 and the state in Equation (12). Thus,
with the help of this kind of cavity, we can construct a quantum
nondemolition measurement, which contains information in
the atomic state of the syndrome spin about how many photons
are lost from the light mode after transmission.
Unfortunately, there are also some constraints in such a

scheme. First, the extra phase obtained in the atomic state
exp(−iq𝜋∕2m−1) is not unique for every q with finite m, e.g.,
for any q1 ∈ N0, if we choose q2 = q1 + 2m, there is a relation
exp(−iq2𝜋∕2m−1) = exp(−iq1𝜋∕2m−1). This means there can be
states with uncorrectable errors, which cannot be distinguished
by this method. This effect will decrease the total fidelity depend-
ing on the choice of the primitive state |Θ. In Section 3, we will
analyze in detail the performance of our repeater scheme for the
special case of “cat codes”. Second, it is not always possible to
deterministically discriminate the atomic states with different
phases, even in theory, because in general they are not mutu-
ally orthogonal.[23,24] However, this complication can be circum-
vented by employing more cavities (or adjusting the same cavity
many times). The idea is to extract partial information of q at sev-
eral times and then combine all the partial information to get the
full syndrome information. For this purpose, we first reflect the
light mode in Equation (12) from a cavity with the rotation angle
𝜙 = 𝜋. The resulting state is

1
2

(|↑⟩s + e−iq𝜋|↓⟩s) (|↑⟩Aâq||02m,Θ⟩ + |↓⟩Aâq ||12m,Θ⟩) , (17)

where the extra phase e−iq𝜋 = 1 if q is even and e−iq𝜋 = −1 if q is
odd. It is not difficult to discriminate the two orthogonal atomic
states | ↑⟩s + | ↓⟩s and | ↑⟩s − | ↓⟩s and after the measurement of
the atomic state, we have some information of q, i.e., whether
it is even or odd. Next, we repeat this process but prepare the
cavity with the rotation angle𝜙 = 𝜋∕2 and reflect the lightmode
again. Not surprisingly, this time the output state becomes[25]

1
2

⎛⎜⎜⎝|↑⟩s + e
−
iq𝜋
2 |↓⟩s⎞⎟⎟⎠

(|↑⟩Aâq||02m,Θ⟩ + |↓⟩Aâq ||12m,Θ⟩). (18)

Now we look at the cases when q is even or odd separately.
In the case when q is even, e−iq𝜋∕2 = 1 if q mod 4 = 0, e−iq𝜋∕2 =
−1 if q mod 4 = 2. For the case that q is odd, e−iq𝜋∕2 = −i if
q mod 4 = 1, e−iq𝜋∕2 = i if q mod 4 = 3. In either case, the
atomic states we need to discriminate are orthogonal (even: Pauli
X eigenstates, odd: Pauli Y eigenstates). So in either case, the
atomic states can be discriminated deterministically, at least in
principle, by adapting the spin basis of the second measurement
according to the outcome of the first (or by including a corre-
sponding spin rotation prior to the secondmeasurement depend-
ing on the result of the first). The steps above can be repeated
again and again if we divide the rotation angle 𝜙 in half at every
step until𝜙 = 𝜋∕2m−1 (see Section S1, Supporting Information).
After all the steps, we will finally know the remainder of q divided

by 2m, rm(q), i.e., q mod 2m = rm (q). The rm(q) tells us which er-
ror space (or the code space) the light mode[7,8] and this is crucial
to improve the total fidelity.

2.4. Entanglement Creation

In our protocol, the transmitted light mode is used to create the
entanglement for the atomic states that Alice and Bob hold and
the cavity-assisted method can also be used to create such en-
tanglement. In order to do this, Bob needs to prepare another
such cavity after his syndrome measurement and this time the
rotation angle 𝜙 should be 𝜋∕2m. With this angle, a “bit flip” hap-
pens after the corresponding rotation operator R̂(𝜙) acts on the
two codewords in Equation (9), i.e.,

R̂
(
𝜋

2m

) ||02m,Θ⟩ = ||12m,Θ⟩ ,

R̂
(
𝜋

2m

) ||12m,Θ⟩ = ||02m,Θ⟩ . (19)

These relations can be derived from Equation (10) using
R̂(𝜙)R̂ (𝜓) = R̂ (𝜙 + 𝜓) with any arbitrary𝜙 and𝜓 . Thus, the state
after this interaction becomes (using again Equation (14) and
now, in addition, Equation (19))

1
2
|↑⟩B (|↑⟩Aâq||02m,Θ⟩ + |↓⟩Aâq ||12m,Θ⟩)
+1
2
e
−
iq𝜋
2m |↓⟩B (|↑⟩Aâq ||12m,Θ⟩ + |↓⟩Aâq||02m,Θ⟩)

= 1
2

⎡⎢⎢⎣
⎛⎜⎜⎝|↑⟩B|↑⟩A + e

−
iq𝜋
2m |↓⟩B|↓⟩A⎞⎟⎟⎠ âq||02m,Θ

⟩

+
⎛⎜⎜⎝|↑⟩B|↓⟩A + e

−
iq𝜋
2m |↓⟩B|↑⟩A⎞⎟⎟⎠ âq ||12m,Θ

⟩⎤⎥⎥⎦ .

(20)

Because this interaction happens after the syndromemeasure-
ment, rm(q) is supposed to be known. Finally, according to Equa-
tion (20), the discrimination between the light states âq|02m,Θ⟩
and âq|12m,Θ⟩ (actually, the states to be discriminated are not ex-
actly these two states if the full loss channel is considered, as
we shall discuss in Section 3.4 in more detail) leads to a col-
lapse for the state in Equation (20) and the conditional atomic
state of Alice and Bob will always become entangled. However,
âq|02m,Θ⟩ and âq|12m,Θ⟩ are generally not orthogonal, thus the
discrimination cannot be done deterministically (or otherwise
in an error-free fashion). This is the only nondeterministic ele-
ment in our scheme if we choose an error-free, unambiguous
discrimination. There are several ways to do the state discrimi-
nation, with distinct advantages and drawbacks. A detailed dis-
cussion will be presented in Section 3. The final entangled state
will be either | ↑⟩B| ↑⟩A + exp(−iq𝜋∕2m)| ↓⟩B| ↓⟩A or | ↑⟩B| ↓⟩A +
exp(−iq𝜋∕2m)| ↓⟩B| ↑⟩A, depending on the measurement result
for the light mode. Again note that q is assumed to be known,
so we have full information of the final entangled state, which
means this kind of entanglement can be a resource for quantum
communication. An error in measuring q would eventually re-
sult in reduced atomic state fidelities. In principle, however, the

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (6 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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q identification is quite reliable, as it is based on an orthogonal
projection measurement of the syndrome spins.

2.5. Full Loss Channel

All the discussions in Sections 2.3 and 2.4 are based on the sim-
plified loss channel, but in practice, photon loss is described by
the full, physical amplitude damping (AD) channel.[7,26] Gener-
ally, a single-mode state after the action of AD is mixed and it can
be expressed as

𝜌′ =
∑∞

k=0 Âk𝜌Â
†
k
, (21)

where �̂� and �̂�′ are the density operators of the states before and
after the action of the channel, respectively. Here, Âk is a nonuni-
tary error operator[7,26]

Âk =
∞∑
n=k

√(
n
k

)√
𝜂n−k(1 − 𝜂)k |n − k⟩ ⟨n|

=

√
(1 − 𝜂)k

k!
√
𝜂
n̂
âk, ∀k ∈ N0, (22)

where 𝜂 is the transmission of the fiber, i.e., the probability of
losing one photon is 1 − 𝜂.
Then the action of AD on the state in Equation (9) leads to a

mixed state and the final density operator becomes

𝜌f =
∞∑
k=0

Âk
1√
2

(|↑⟩||02m,Θ⟩ + |↓⟩ ||12m,Θ⟩) ×H.c. (23)

Next, if there is a rotation operator acting on it, the density
operator transforms as

R̂ (𝜙) 𝜌f R̂
† (𝜙) =

∞∑
k=0

R̂ (𝜙) Âk
1√
2

(|↑⟩||02m,Θ⟩ + |↓⟩ ||12m,Θ⟩)
×H.c. (24)

If we only look at the k-component of Equation (24) and tem-
porarily ignore the Hermitian conjugate (H.c.) of it, i.e.,

R̂ (𝜙) Âk
1√
2

(|↑⟩||02m,Θ⟩ + |↓⟩ ||12m,Θ⟩)

= ei𝜙n̂

√
(1 − 𝜂)k

k!
√
𝜂
n̂
âk 1√

2

(|↑⟩||02m,Θ⟩ + |↓⟩ ||12m,Θ⟩)

=
⎛⎜⎜⎝
√

(1 − 𝜂)k

k!
√
𝜂
n̂
⎞⎟⎟⎠ ei𝜙n̂âk 1√

2

(|↑⟩||02m,Θ⟩ + |↓⟩ ||12m,Θ⟩) .
= e−ik𝜙

⎛⎜⎜⎝
√

(1 − 𝜂)k

k!
√
𝜂
n̂
âk
⎞⎟⎟⎠ ei𝜙n̂ 1√

2

(|↑⟩||02m,Θ⟩ + |↓⟩ ||12m,Θ⟩)
= e−ik𝜙 1√

2

(|↑⟩ÂkR̂ (𝜙) ||02m,Θ⟩ + |↓⟩ÂkR̂ (𝜙) ||12m,Θ⟩) . (25)

Comparing Equation (25) with Equation (16), including the
steps for the syndrome detection in Equations (13)–(16), it is obvi-
ous that for the k- or q-components, the only difference is that âk is

replaced by Âk, bringing a prefactor Âk∕ âk =
√
(1 − 𝜂)k∕k!

√
𝜂
n̂
.

Thus, all the results in Sections 2.3 and 2.4 are exactly applica-
ble for the full loss channel up to these prefactors acting on each
component. It is not straightforward what effects these prefactors
will bring for an arbitrary primitive state |Θ. As an example of our
scheme, we refer to a part of the results given by Bergmann and
van Loock[7] and evaluate the performance of our repeater proto-
col using the “cat codes”.

3. Analysis

In the preceding section, we describe the basic elements of our
protocol that could be used, in principle, for quantum commu-
nication over long distances at high rates. Here in this section,
we explicitly propose such a scheme for long-distance quantum
communication based on these elements. We will evaluate the
performance of this scheme numerically for a particular case of
the rotation-symmetric bosonic codes—the cat codes.

3.1. Scheme for Long-Distance Quantum Communication

Wewant to propose a schemewithout the need of quantummem-
ories, similar to a third-generation quantum repeater,[4] with the
goal not to slow down the repeater due to two-way classical com-
munication and the corresponding waiting times. But instead of
directly transmitting encoded qubits, in our scheme, we aim to
create entangled states shared between Alice and Bob over a long
distance.
Realizing long-distance quantum communication directly

from one point (Alice) to another (Bob) connected by a fiber chan-
nel is not efficient because of the photon loss in the fiber, and so
intermediate stations have to be employed along the channel be-
tween Alice and Bob in order to suppress the exponential decay
of either qubit rates or qubit state fidelities. Assume that the to-
tal distance between Alice and Bob is Ltot, then the repeater sta-
tions are placed at every elementary distance L0 = Ltot ∕ne, where
ne is the number of elementary links. The repeater stations are
divided into two different types according to their function: one
is for sending the light and the other one is for receiving it (see
Figure 2).
The structure of the two kinds of elementary stations is de-

picted in Figure 3. ES1 , which sends the light, consists of two
cavities. The cavities are used to generate the desired light mode
state according to Section 2.2 and the two modes just gener-
ated are then sent to the two nearest stations separately in op-
posite directions. For ES2, which receives the light, the number
of involved cavities varies depending on the loss order of the
code. The syndrome measurements and the entanglement cre-
ation are performed in ES2 as described in Sections 2.3 and 2.4.
Note that the number of cavities needed in each repeater sta-
tion can be different from what is depicted in Figure 3, because
for the generation and the syndrome measurement procedures,
one can either use one cavity many times with different param-
eters or use many different cavities only once. It is obvious that

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (7 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 2. Schematic of the long-distance entanglement distribution protocol including two types of elementary stations: ES1 to send the light mode and
ES2 to receive it.

Figure 3. The structure of two types of elementary stations: a) ES1 and b) ES2, c) one half of ES1 and one half of ES2 together can form an elementary
“unit”. The different spin measurements are denoted by BM (Bell measurement) and SM (syndrome measurement).

ES1 and ES2 are mirror-symmetric, so both can be divided into
two parts. The right part of ES1 and the left part of ES2 (or
the other way around) can form a basic elementary unit of the
whole protocol. In an elementary unit, all the three procedures
including state preparation, syndromemeasurement, and entan-
glement creation are performed in corresponding order. This re-
sults in an entangled state between the atomic spin in ES1 and the
atom inside the last cavity that interacted with the light mode in
ES2. Thus, many such elementary units connecting each other
can form the whole repeater protocol. Bell measurements are
then performed on the two still unmeasured spins at every re-
peater station to swap the entanglement and hence coherently
connect the individual segments. Finally, the atomic spins in
Alice’s and Bob’s hands are entangled over the total distance
(at least “effectively” entangled in case Alice and Bob decide to

measure their qubits immediately depending on the repeater’s
application).
In practice, the Bell measurement on the two atoms at every

ES1 can be done directly after the state preparation process. This
way the entanglement between the atoms in every half of ES1 and
the corresponding light mode sent away becomes the entangle-
ment between the two light modes that ES1 has sent. So, there is
no need to use quantummemories at ES1 to store the light entan-
glement (butmemoriesmay still be employed by Alice and Bob if
they want to keep their entangled pairs). The sender and receiver
stations (of Alice and Bob) do not constitute a complete ES1 or
ES2, but only a half of it. At each ES1 which connects two nearest
“units”, the state preparation at the two parts must finish at the
same time and the Bell measurement will be done immediately
after the state preparation (so now the two flying light modes get

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (8 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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entangled). We assume that all the elementary distances between
two nearest stations are the same. Then the light modes will ar-
rive at every ES2 simultaneously, followed by the syndrome mea-
surement and the entanglement creation. After all the processes,
the atoms at the ES2 parts in the nearest “units” connected by ES1
get entangled. Finally, after doing Bell measurements at all the
ES2’s, the atomic states in Alice’s and Bob’s hands are entangled.
More details of the derivations can be found in Section S7 of the
Supporting Information. Also, if we do not need to keep the en-
tangled pairs for Alice and Bob, e.g., when doing QKD, Alice and
Bob can measure their atoms immediately and do not need the
memories either. In conclusion, as long as all the events are suffi-
ciently well synchronized, no quantum memories are needed in
the whole scheme to realize long-distance quantum communica-
tion. The precise moment when we do the Bell measurements at
the ES1’s is irrelevant to the final joint state for Alice and Bob,
so for simplicity and without loss of generality, the related theo-
retical derivations are mostly based on what happens in a single
elementary “unit”.
For every elementary unit, there is a nonunit fidelity F0 for

the distributed spin-spin entangled states and a nonunit success
probability P0 for the state discrimination used to create the en-
tanglement. The total success probability Ptot is the probability
that the state discrimination succeeds at every station, so it is easy
to get the relation, Ptot = Pne

0 . To calculate the total fidelity Ftot, it
is necessary to consider the entanglement swapping process (also
see Section S4, Supporting Information).[27,28]

3.2. Cat Codes

As described in Section 2.2, for any optical states, it is possi-
ble to construct a so-called RSBC as in Equation (10). The “cat
codes” are a special case for the RSBC, for which we choose
the primitive state |Θ to be the optical coherent state | 𝛼 =

exp(−|𝛼|2∕2) ∞∑
n = 0

𝛼n|n∕n!, where |n is the photon number state

with photon number equal to n.[5,7,29] The amplitude 𝛼 is an im-
portant parameter in our scheme and it must be precisely con-
trolled via the corresponding laser intensity (and so the average
photon number |𝛼|2). Thus, the corresponding codewords are[7]
||0M,cat

⟩
= 1√

NM

M−1∑
k = 0

R̂
(
2k𝜋
M

) |𝛼⟩ = 1√
NM

M−1∑
k = 0

|||𝛼e 2k𝜋i
M

⟩
,

||1M,cat

⟩
= 1√

NM

M−1∑
k = 0

R̂
(
(2k + 1)𝜋

M

) |𝛼⟩
= 1√

NM

M−1∑
k = 0

|||𝛼e (2k+1)𝜋i
M

⟩
.

(26)

It is then straightforward to find out the cyclic behavior for cat
codes in the simplified loss model[7]

âMn ||0M,cat

⟩
= 𝛼Mn ||0M,cat

⟩
,

âMn ||1M,cat

⟩
= (−1)n 𝛼Mn ||1M,cat

⟩
,

(27)

∀n ∈ N0. The cyclic rule means that for cat codes, the codewords
or the states in an error spacewill come back to the corresponding

code or error space, which contributes to the total fidelity. Recall
that the method in Section 2.2 can only generate states withM =
2m .
After some lengthy calculations,[7] the density matrix of the

joint state of the atom (at Alice again considering first a single
link between Alice and Bob) and the light mode after the LBC
becomes

𝜌’ =
∑2m+1−1

q=0 pq

⎛⎜⎜⎜⎝
|↑⟩Aâq |||0̃2m,cat⟩ + |↓⟩Aâq |||1̃2m,cat⟩√

2N ’
m,q

⎞⎟⎟⎟⎠ ×H.c. (28)

where the statistical weights are (assuming real 𝛼)

pq =
1√
N ’

M

∞∑
j = 0

[
𝛼2 (1 − 𝜂)

]2m+1⋅j+q(
2m+1 ⋅ j + q

)
! . (29)

Here, |0̃2m,cat⟩ and |1̃2m,cat⟩ are the damped codewords

|||0̃2m,cat⟩ = 1√
N ’

M

M−1∑
k=0

R̂
(
2k𝜋
M

) |||√𝜂𝛼⟩,
|||1̃2m,cat⟩ = 1√

N ’
M

M−1∑
k=0

R̂
(
(2k + 1)𝜋

M

) |||√𝜂𝛼⟩,
(30)

which means the amplitudes of the coherent-state compo-
nents are damped. The states in loss space—âq|0̃2m,cat⟩ and
âq|1̃2m,cat⟩—are not normalized anymore, so a normalization con-

stant N ’
m,q is needed to normalize them (âq|0̃2m,cat⟩∕√N ’

m,q and

âq|1̃2m,cat⟩∕√N ’
m,q are normalized states now). Because of the

cyclic behavior presented in Equation (27), all the terms with
q ≥ 2m+1 have their corresponding terms with q < 2m+1 and they
can be simply added up. The terms of Equation (28) can be di-
vided into two parts—the first 2m terms and the last 2m terms.
According to Section 2.3, the first 2m terms can be individually
distinguished in a deterministic fashion and the last 2m terms
are uncorrectable errors. So, after the syndrome measurement,
the density matrix will collapse to

𝜌
′′ =

pq
pq + pq + 2m

⎛⎜⎜⎜⎝
|↑⟩Aâq |||0̃2m,cat⟩ + |↓⟩Aâq |||1̃2m,cat⟩√

2NM, q′

⎞⎟⎟⎟⎠ × H.c.

+
pq+2m

pq + pq+2m

⎛⎜⎜⎜⎝
|↑⟩Aâq |||0̃2m,cat⟩ − |↓⟩Aâq |||1̃2m,cat⟩√

2N′M, q

⎞⎟⎟⎟⎠ × H.c., (31)

with probability pq + pq+2m , which depends on the result of the
measurement of the atomic state (here q < 2m and we make use
of the cyclic behavior). According to Section 2.4, after another cav-
ity reflection, the state becomes

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (9 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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𝜌
′′′ =

pq
pq + pq+2m

⎛⎜⎜⎜⎝
|||Φ+

q𝜋∕2m

⟩
BA
âq |||0̃2m,cat⟩ + |||Ψ+

q𝜋∕2m

⟩
BA
âq |||1̃2m ,cat⟩√

2NM,q’

⎞⎟⎟⎟⎠ × H.c.

+
pq+2m

pq + pq+2m

⎛⎜⎜⎜⎝
|||Φ−

q𝜋∕2m

⟩
BA
âq |||0̃2m,cat⟩ + |||Ψ−

q𝜋∕2m

⟩
BA
âq |||1̃2m,cat⟩√

2NM,q’

⎞⎟⎟⎟⎠ × H.c.,

(32)

where |Φq𝜋∕2m
± ⟩BA and |Ψq𝜋∕2m

± ⟩BA are the generalizations of the
four Bell states. These are defined as

||Φ±
𝜃

⟩
BA

=
|↑⟩B|↑⟩A ± e−i𝜃|↓⟩B|↓⟩A√

2
,

||Ψ±
𝜃

⟩
BA

=
|↑⟩B|↓⟩A ± e−i𝜃|↓⟩B|↑⟩A√

2
.

(33)

Then after the state discrimination for the light mode, the fi-
nal atomic state shared by Alice and Bob (i.e., here, in a sin-
gle repeater segment) becomes a mixture of |Φq𝜋∕2m

+ ⟩ BA and|Φq𝜋∕2m
− ⟩ BA or a mixture of |Ψq𝜋∕2m

+ ⟩ BA and |Ψq𝜋∕2m
− ⟩ BA depend-

ing on the results of the state discrimination. In this case, our
target is the state |Φq𝜋∕2m

+ ⟩ BA or |Ψq𝜋∕2m
+ ⟩ BA. Because |Φq𝜋∕2m

+ ⟩ BA

(or |Ψq𝜋∕2m
+ ⟩ BA) and |Φq𝜋∕2m

− ⟩ BA (or |Ψq𝜋∕2m
− ⟩ BA) are orthogonal,

the (q + 2m)-terms have no contribution to the total fidelity. Fi-
nally, we obtain the fidelity in an elementary, entangled-state dis-
tribution unit (i.e., the initial fidelity in a loss-corrected repeater
segment)

F0 =
2m−1∑
q=0

pq, (34)

which is the sum of the statistical weights of the first 2m terms of
�̂�′.
Typically, there are two choices for the discrimination of light-

mode quantum states, homodyne measurement or USD based
on photon measurements, and these have distinct properties.
The case with homodyne measurement can be deterministic or
probabilistic depending on how one defines a successful mea-
surement outcome, but the fidelity will typically decrease with
growing success probability. The USD does not affect the fidelity
(i.e., it is error-free), but it cannot be done deterministically for
nonorthogonal states. Also, for larger loss orders (L > 1), it is sub-
tle to define a successful measurement in a suitable manner. In
our model, USD seems more appropriate, even though it cannot
be done deterministically. The maximal success probability for
USD is[23,24]

maxPUSD = 1 − || ⟨𝜓1
||𝜓2⟩||, (35)

where |𝜓1 and |𝜓2 are the states to be distinguished with equal a
priori probabilities. In our case, the maximal success probability

to do USD in an elementary unit is then

maxP0 = 1 − ||| ⟨0̃q2m,Θ||| 1̃q2m,Θ⟩|||. (36)

Since in our case, |0̃q2m,Θ⟩ and |1̃q2m,Θ⟩ are not orthogonal, the
maximal success probability is certainly below one for finite 𝛼.
However, provided 𝛼 is sufficiently large, the overlap will almost
vanish and then the probability can be close to unity. In this case
though, with growing 𝛼, the photon loss (hence, in Equation (32),
the uncorrectable phase-flip) probability increases.

3.3. Numerical Analysis Based on Cat Codes

According to Section 3.2, it is obvious that the fidelity and the
success probability in an elementary unit, F0 and P0, depend on
the elementary distance L0. Generally, to get near-unit F0 and P0,
L0 needs to be rather small, but a small L0 leads to a big ne (at
a given total distance), which occurs in the powers for the total
fidelity and success probability, and eventually again decreases
them. So, there is a trade-off concerning the choice of the ele-
mentary distance, but this is closely related to the choice of how
to encode the information. Fortunately, in our setting, this rela-
tion is rather simple—both the total fidelity and the total success
probability improve with decreasing L0 (see Figure 4). However,
in practice, having too many stations means a high experimental
cost, which is undesirable. Moreover, the local experimental im-
perfections, especially cavity loss and more generally any form of
coupling losses (see below), contribute to a greater extent for an
increasing number of stations. Thus, the stations need to be as
few as possible and, at the same time, Ftot and Ptot should be near
unity.
For fixed L0 and Ltot, Ftot, and Ptot also depend on the amplitude

𝛼 in the two codewords. Here is again a trade-off—for too large
𝛼, photons are more likely to get lost (with increased weights of
the uncorrectable loss terms) and hence Ftot decreases, while the
two codewords become more orthogonal and hence the success
probability for the state discrimination increases. Conversely, for
smaller 𝛼, Ftot becomes larger and Ptot becomes smaller. A larger
loss order L = 2m − 1 is also beneficial for the fidelity, but it leads
to a decreasing Ptot. As shown in Figure 4, for repeaterless cases (
L0 = Ltot = 1000 km), the fidelities do not always go down with
increasing 𝛼. This can be explained by looking at what happens
when 𝛼 increases from zero. For example, for the 1-loss code
(L = 1), when 𝛼 is very small, it is most probable to lose zero
or one photons, in which case we would be able to correct the
codewords. When 𝛼 becomes larger, the probability to lose two

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (10 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 4. a,c) The total fidelity Ftot and b,d) the total success probability Ptot as a function of 𝛼 for various elementary distances L0:L0 = 0.01 km (blue),
L0 = 0.1 km (orange), L0 = 1 km (green), L0 = 10 km (red), L0 = 100 km (purple), and L0 = 1000 km (brown). We compare them for the 1-loss
(dashed) and 3-loss (solid) codes in (a) and (b) and for the 3-loss (dashed) and 7-loss (solid) codes in (c) and (d). The total distance is always chosen
to be 1000 km. Here and in the subsequent figures, the parameter 𝛼 corresponds to the real-valued amplitude of the coherent states as employed in our
cavity-QED-based scheme where 𝛼2 is the average photon number.

or three photons, contributing to the set of uncorrectable errors,
increases, and at some point, the weights of the corresponding
terms will dominate in the density operator, so the fidelity will
then drop. However, if 𝛼 keeps increasing, then the probability to
lose four or five photons will also increase and start contributing.
This time, because we can correct the errors coming from four
and five photon losses, the fidelities will go up again. The situa-
tion is similar when 𝛼 becomes even larger and so the fidelities
will oscillate, going up and down. For the case when the repeater
stations are included, we also have to include the entanglement
swapping operations. According to Section 3.1, ne (the number of
elementary “units”) is always even (10, 100, 1000…) except when
L0 = 1000 km ( ne = 1 in this case), and then according to Equa-
tion (S21) of the Supporting Information, the fidelities can no
longer go below 1/2.
To summarize, we need to determine an 𝛼-regime which al-

lows for near-unit Ftot and Ptot with L0 being as large as possi-
ble. As shown in Figure 4a,b, for the 1-loss cat code, this kind of
𝛼 regime does not exist with L0 ≥ 0.01 km, which means more
than a hundred thousand stations are needed for a total distance

of 1000 km. Obviously, it is then not an optimal choice to use
the 1-loss cat code. Fortunately, if we consider codes, there is
such an 𝛼 regime with a suitable choice of L0. The behaviors of
Ftot and Ptot based on the 3-loss and 7-loss codes are shown in
Figure 4c,d. For the 3-loss code, the appropriate 𝛼 regime does
exist, with L0 ≈ 0.01 km, and for the 7-loss code, it works with
L0 ≈ 0.1 km. Thus, one may expect that there is such a suit-
able 𝛼 regime for even larger L0 if the loss order goes beyond
seven (while L0 must remain sufficiently small; clearly smaller
than 15 km which corresponds to a channel transmission of at
least ½ per segment).

3.4. Secret Key Rate Analysis

An important possible application of entanglement distribution
is QKD. Our repeater protocol, in principle, can then be used
for long-range QKD. According to Section 3.2 (also see Sec-
tion S4, Supporting Information), one possibility for the final
quantum state (shared among Alice and Bob) is presented in

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (11 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Equation (S16) of the Supporting Information. Here we rewrite
it as(
1
2
+ 1
2

2m−1∏
i = 0

(
pi − pi+2m
pi + pi+2m

)ti
)|||Φ+

q𝜋∕2m

⟩ ⟨Φ+
q𝜋∕2m

|||
+

(
1
2
− 1
2

2m−1∏
i = 0

(
pi − pi+2m
pi + pi+2m

)ti
)|||Φ−

q𝜋∕2m

⟩ ⟨Φ−
q𝜋∕2m

||| ,
(37)

with a corresponding success probability as described in Equa-
tion (S20) of the Supporting Information. Note here that |Φ±

q𝜋∕2m

can also be replaced by |Ψ±
q𝜋∕2m depending on all the results of

the Bell measurements being done in the entanglement swap-
ping process. If we define the fidelity in this case as F{ti}, then
Equation (37) can be rewritten as

F{ti}
|||Φ+

q𝜋∕2m

⟩ ⟨Φ+
q𝜋∕2m

||| + (
1 − F{ti}

) |||Φ−
q𝜋∕2m

⟩ ⟨Φ−
q𝜋∕2m

|||. (38)

The (asymptotic) secret key rate is the product of the raw rate
and the secret key fraction[30]

RQKD := Rrawr∞. (39)

The raw rate Rraw in our case is

Rraw = 1
t0

Ptot, (40)

where t0 ≈ 10−6s is the typical repetition time when light–matter
interfaces and couplings are involved, which corresponds to an
experimental clock rate ∼MHz (recall that our scheme is memo-
ryless and hence independent of the usual waiting times for clas-
sical signals in memory-based quantum repeater schemes; un-
like all-photonic quantum repeaters, however, clock rates ∼GHz
will be hard to achieve in our case). In our scheme, when em-
ployed for QKD, Alice and Bob can measure their atomic states
immediately and the complete classical information about the
Bell measurement outcomes from the entanglement swapping
at all the repeater stations can be transferred to them at the end
with no need to wait for any classical signals at an earlier stage.
Thus, the raw rates have no fundamental limitation in theory and
here we just choose a typical repetition time in the lab in order to
analyze the secret key rates. We consider an entanglement-based
version of the BB84 scheme. The BB84 secret key fraction is given
by[28,30]

rBB84∞ = 1 − h
(
eZ
)
− h

(
eX
)
, (41)

where h(p) is the binary entropy function and eX∕Z are the quan-
tum bit error rates (QBERs). For the explicit state in Equa-
tions (37) and (38), the averaged QBERs eX and eZ are

[28,30]

eX = 1 − F{ti}, eZ = 0. (42)

After some additional derivations (see Section S5, Supporting
Information), we get a lower bound of the averaged secret fraction
for the BB84 protocol, which can be written as

rBB84∞ > 1 − h
(
Ftot

)
. (43)

Hence the lower bound of the secret key rate RLB is given by

RQKD > RLB = 1
t0

Ptot
(
1 − h

(
Ftot

))
, (44)

where RQKD is the secret key rate for the QKD system.
The secret key rate incorporates both the fidelity and the suc-

cess probability. As shown in Figure 5a,b, for the 1-loss code, if
the elementary distance is 0.01 km, it is possible to get a nonzero
secret key rate, but in a rather narrow range of 𝛼 (total distance:
1000 km). If the elementary distance is equal to 0.1 km, the se-
cret key rate is always zero. This is similar to what we discussed in
Section 3.3—for L = 1, there is no such 𝛼-regime that both Ftot
and Ptot are large enough. Analogously, for L = 3 and L = 7,
the secret key rate can be nonzero for an elementary distance of
0.01 and 0.1 km, but this requires larger 𝛼. It can be seen from
Figure 5b,d,f that the secret key rate per channel use RQKDt0 is
much smaller than one with an elementary distance of 0.01 km
for the 1-loss code. However, it can be very close to unity for the 3-
loss codewith an elementary distance of 0.01 km, and in this case,
it can also be nonzero with an elementary distance of 0.1 km, but
the rate is still not very large in this case. For the 7-loss code, it
can be close to unity even with an elementary distance of 0.1 km.
Therefore, it is reasonable to suppose that for higher-loss codes
(L > 7), the secret key rate can be nonzero with larger elementary
distances and the secret key rate per channel use may even reach
unity with a large enough elementary distance (e.g., L0 = 0.1 km
or even larger).
Here, the total distance is always Ltot = 1000 km and

the corresponding (repeaterless) total transmittance is 𝜂tot =
exp(−Ltot∕Latt) ≈ 1.82 × 10−20, so for the corresponding PLOB
bound we have,[31,32] −log2(1 − 𝜂tot) ≈ 𝜂tot∕ ln(2) ≈ 2.62 × 10−20.
Then, as it can be seen in Figure 5, the secret key rates per chan-
nel use can significantly exceed the PLOB bound with loss orders
L = 1, 3, 7 and suitably chosen values for 𝛼.
Besides channel loss, in a real experiment, there are also er-

rors caused by the local imperfections such as the photon loss
related with the cavity interfaces at every repeater station as well
as imperfect measurements. What we discussed in Section 2.5
is also applicable for the local photon loss, but the corresponding
transmission parameter 𝜂 will depend on the cavities and the way
to do the measurements (instead of the channel distance). Since
the local errors will accumulate at every station, more stations do
not necessarily provide a larger secret key rate in this case. How-
ever, note that thanks to the overall avoidance of storing qubits,
there are no extramemory errors in our scheme such as the usual
memory dephasing in memory-based quantum repeaters. Also
note that our model to include the local imperfections exclusively
via local losses means that also the finally shared state in Equa-
tions (37) and (38) maintains its specific form where only one
type of Pauli errors occurs resulting in a nonzero QBER only in
one of the two BB84 variables (see Equation (42)). In a more gen-
eral model that takes into account other local operational errors
such as qubit depolarizing errors, both QBERs become nonzero
and in this case the secret key fraction may sharply drop to zero
for insufficient depolarization error parameters evenwhen all the
other parameters take on very good values (see Equation (41)).
However, in principle, also in this more general setting, general
quantum error correction codes can provide a certain level of pro-

Adv. Quantum Technol. 2023, 6, 2200151 2200151 (12 of 16) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202200151 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [01/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 5. a,c,e) The lower bound of the secret key rate per second RQKD and, b,d,f) also explicitly shown for convenience, the secret key rate per channel
use R

QKD
t0 as a function of 𝛼 for codes with different loss order: 1-loss code in (a) and (b), 3-loss code in (c) and (d), 7-loss code in (e) and (f), and

also for various elementary distances L0:L0 = 0.01 km (blue), L0 = 0.1 km (orange), L0 = 1 km (green), L0 = 10 km (red), L0 = 100 km (purple), and
L0 = 1000 km (brown). The total distance is always chosen to be 1000 km.

tection against such local errors. Experimentally, both local loss
and local (dephasing or depolarizing) noise may occur with typi-
cally one dominating over the other.
In order to evaluate the effects caused by the local losses, we

set 𝜂local = 0.99, 0.999. In Figure 6c,e, one can see that the secret
key rates are indeed reduced, but they would still overcome the

PLOB bound, even when the local errors are included with a loss
order of L = 3, 7. For 𝜂local = 0.999, the rates do not change a lot
and we can still realize near-unit rates per channel use for certain
values of 𝛼 and L0. On the other hand, for 𝜂local = 0.99, the final
rates decrease greatly. However, we can see in Figure 6d,f, even
though the rates are much smaller than unity, they can still beat
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Figure 6. The lower bound of the secret key rate per channel use RQKDt0 including a,c,e) local loss: 𝜂local = 0.999 and b,d,f) 𝜂local = 0.99 as a function
of 𝛼 for codes with different loss orders: 1-loss code in (a) and (b), 3-loss code in (c) and (d), 7-loss code in (e) and (f), and also for various elementary
distances L0:L0 = 0.01 km (blue), L0 = 0.1 km (orange), L0 = 1 km (green), L0 = 10 km (red), L0 = 100 km (purple), and L0 = 1000 km (brown).
The total distance is always chosen to be 1000 km.
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the PLOBbound. Also, the peaks are very narrow for 𝜂local = 0.99,
so to reach the optimal secret key rates, one needs to have a
pretty accurate control of the value of 𝛼. As for the 1-loss code,
we can see in Figure 6a,b that the rates already decrease signif-
icantly even for 𝜂local = 0.999 and there is only a narrow peak
to overcome the PLOB bound. For 𝜂local = 0.99, the rates can-
not beat the PLOB bound even with very short L0. Moreover, one
can see that a shorter elementary distance L0 does not necessarily
bring us a better performance of the secret key rate according to
Figure 6a,b. In Figure 6a, it can be seen that the best choice for L0
is not the shortest one, L0 = 0.01 km, but instead a larger one,
L0 = 0.1 km, and in Figure 6b, the best choice is even larger than
that—L0 = 1 km.
The secret key rate inevitably drops if the local losses are in-

cluded in addition to the channel losses and a consequence is
that the local losses must not be too large (𝜂local ≥ 0.999) in order
to obtain an 𝛼-regime where the secret key rate per channel use
is close to unity. However, as already mentioned in Section 3.3,
even though the numerical analysis for higher-loss codes beyond
L = 7 has not been done yet, we expect that if the loss order L
could be larger (L > 7), there should be an 𝛼-regime with reason-
able values of L0 (note again that the shortest L0 may not be the
best choice) and also the maximally allowed local losses could be
a bit larger (e.g., 𝜂local ≤ 0.99). Nonetheless, keeping the local im-
perfections at very low values (10−3–10−2 or possibly 10−1 corre-
sponding to a regime less demanding than for the typical thresh-
old values in fault-tolerant quantum computing) is a requirement
of our scheme which is not easy to meet in a practical realization.

3.5. Conclusion

We proposed a scheme for long-distance entanglement distribu-
tion based on so-called RSBCs and cavity-QED. The cavity-QED
system employs a three-level atom confined in a high-finesse cav-
ity. An exploitation of the atomic system for quantum storage is
unnecessary, because our protocol, though based on spin–spin
entanglement distribution, does not involve any extra classical
signaling times for synchronization of the repeater segments.
This is achieved by utilizing quantum error correction of pho-
ton loss errors. We showed that the cavity-QED-based approach
can be used to generate the RSBC for the photonic communica-
tion through the fiber channels of the repeater. At the same time,
the cavity-QED interactions can be employed to do the syndrome
measurement required for loss error correction and to create the
entangled atomic states. Thanks to the properties of the RSBCs,
the dominating errors induced from photon losses along the op-
tical fiber channel can be immediately corrected at the interme-
diate repeater stations.
A specific instance of an RSBC—the cat code has been ana-

lyzed in detail. To get a better state fidelity, generally higher-loss
codes are needed. However, in this case, the overlap of the code-
words increases, which results in a worse success probability
of the optical, USD, as employed in our scheme to disentangle
the light modes from the entangled spin states. Fortunately,
we found that for higher-loss codes, fewer elementary repeater
stations are required in order to get an 𝛼 regime (𝛼 is the light
mode amplitude) where both the final state fidelity and the over-
all success probability become near-unity. For QKD applications,

the secret key rate analysis leads to a similar conclusion, namely
that for higher-loss codes, fewer elementary repeater stations
are needed to obtain an 𝛼 regime where the secret key rate per
channel use is close to unity. Final secret key rates of the order
of MHz are then possible, i.e., in principle, final long-distance
quantum communication rates that match the experimentally
given clock rates for cavity-QED atom–light systems. However,
once the local losses at all the repeater stations are included into
the analysis, as required to assess a more realistic scenario, the
key rate can drop dramatically for a local transmission parameter
chosen too small (i.e., smaller than 0.99). Hence, really small
local losses (with a local transmission greater than 0.999) must
be assumed at every elementary station in our scheme to keep
the key rate close to unity. Nonetheless, it is also predicted that
even higher-loss codes than those considered here (i.e., 𝐿 > 7)
may lead to a further improvement.
Cat qubits could also be embedded into a higher multiqubit

code,[12,17,18], e.g., the so-called quantum parity code, combining
many physical qubits into a logical qubit. Unlike the usual single-
photon dual-rail (two-mode) qubits for which some physical
qubits are considered to be erased through the loss channel (i.e.,
two independently acting, identical oscillator amplitude damp-
ing channels), the single-mode qubits in bosonic, continuous-
variable codes will not be naturally erased in a fiber channel.
Instead, in this case, the single-mode amplitude damping gener-
ally leads to a distortion of the quantum states. Nonetheless, we
may choose to discard some qubits artificially, e.g., we can do the
USD on one of the physical qubits and if it turns out to be unsuc-
cessful, we then discard this qubit and attempt the USD for the
remaining physical qubits. So, with this method, in principle, we
can have a higher chance to accomplish the USD and the overall
success probability of such a repeater scheme will be improved.
A crucial benefit of our current approach though is that it is
hardware-efficient and thus no additional multimode couplings
to generate the higher-order multiqubit codes are needed.
There are still various other kinds of RSBCs, e.g., those based

on squeezed cat states, binomial states, or Pegg–Barnett states.[9]

Our scheme for the syndrome measurement is expected to
work also for the generalized RSBCs. However, the performance
in terms of fidelity is no longer so clear for the other RSBCs,
but the overlap of the codewords potentially becomes smaller
(so the success probability is expected to be improved) than
for the cat codes, especially when the squeezed cat codes and
the binomial codes are considered. Thus, as a combination
of the final state fidelity and the overall success probability,
the secret key rate of long-range QKD based on our repeater
scheme should also be improved with this generalization. To
conclude, the other RSBCs potentially have a better performance
than the cat codes and we leave it for future work to analyze
the performance of other instances of RSBCs. Generally, we
hope that our scheme will inspire further experimental research
towards realizing elements of the proposed method with the
ultimate goal of long-distance quantum communication. For a
practical, real-world application, however, the local losses and
errors that occur at every repeater station in our scheme are a
serious obstacle and so further loss/error-suppressing elements
would have to be incorporated into our scheme, for instance, via
additional quantum error correction codes on the atomic spin
qubit. Moreover, in our high-rate repeater scheme, all elements
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must be precisely synchronized, especially with uneven segment
lengths where additional delay lines may be employed.
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