Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9194
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWagner, Ford M-
dc.contributor.authorMelnikas, Simas-
dc.contributor.authorCramer, Joel-
dc.contributor.authorDamry, Djamshid A.-
dc.contributor.authorXia, Chelsea Q.-
dc.contributor.authorPeng, Kun-
dc.contributor.authorJakob, Gerhard-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorKičas, Simonas-
dc.contributor.authorJohnston, Michael B.-
dc.date.accessioned2023-06-19T08:21:51Z-
dc.date.available2023-06-19T08:21:51Z-
dc.date.issued2023-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9211-
dc.description.abstractSpintronic metal thin films excited by femtosecond laser pulses have recently emerged as excellent broadband sources of terahertz (THz) radiation. Unfortunately, these emitters transmit a significant proportion of the incident excitation laser, which causes two issues: first, the transmitted light can interfere with measurements and so must be attenuated; second, the transmitted light is effectively wasted as it does not drive further THz generation. Here, we address both issues with the inclusion of a high-reflectivity (HR) coating made from alternating layers of SiO2 and Ta2O5. Emitters with the HR coating transmit less than 0.1% of the incident excitation pulse. Additionally, we find that the HR coating increases the peak THz signal by roughly 35%, whereas alternative attenuating elements, such as cellulose nitrate films, reduce the THz signal. To further improve the emission, we study the inclusion of an anti-reflective coating to the HR-coated emitters and find the peak THz signal is enhanced by a further 4%.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleOptimised spintronic emitters of terahertz radiation for time-domain spectroscopyen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-9194-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleJournal of infrared, millimeter, and terahertz wavesde
jgu.journal.volume44de
jgu.pages.start52de
jgu.pages.end65de
jgu.publisher.year2023-
jgu.publisher.nameSpringerde
jgu.publisher.placeNew York, NYde
jgu.publisher.issn1866-6892de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
dc.date.updated2023-05-11T10:04:26Z-
jgu.publisher.doi10.1007/s10762-022-00897-9de
elements.object.id154509-
elements.object.labels0204 Condensed Matter Physics-
elements.object.labels0205 Optical Physics-
elements.object.labels0906 Electrical and Electronic Engineering-
elements.object.labelsNetworking & Telecommunications-
elements.object.labels4006 Communications engineering-
elements.object.labels5102 Atomic, molecular and optical physics-
elements.object.typejournal-article-
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
optimised_spintronic_emitters-20230511120427258.pdfPublished version1.38 MBAdobe PDFView/Open