Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9092
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeer, Hendrik-
dc.contributor.authorGomonay, Olena-
dc.contributor.authorSchmitt, Christin-
dc.contributor.authorRamos, Rafael-
dc.contributor.authorSchnitzspan, Leo-
dc.contributor.authorKronast, Florian-
dc.contributor.authorMawass, Mohamad-Assaad-
dc.contributor.authorValencia, Sergio-
dc.contributor.authorSaitoh, Eiji-
dc.contributor.authorSinova, Jairo-
dc.contributor.authorBaldrati, Lorenzo-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2023-05-16T07:47:35Z-
dc.date.available2023-05-16T07:47:35Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9109-
dc.description.abstractWe demonstrate how shape-dependent strain can be used to control antiferromagnetic order in NiO/Pt thin films. For rectangular elements patterned along the easy and hard magnetocrystalline anisotropy axes of our film, we observe different domain structures and we identify magnetoelastic interactions that are distinct for different domain configurations. We reproduce the experimental observations by modeling the magnetoelastic interactions, considering spontaneous strain induced by the domain configuration, as well as elastic strain due to the substrate and the shape of the patterns. This allows us to demonstrate and explain how the variation of the aspect ratio of rectangular elements can be used to control the antiferromagnetic ground-state domain configuration. Shape-dependent strain does not only need to be considered in the design of antiferromagnetic devices, but can potentially be used to tailor their properties, providing an additional handle to control antiferromagnets.en_GB
dc.language.isoengde
dc.rightsInCopyright*
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleStrain-induced shape anisotropy in antiferromagnetic structuresen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-9092-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePhysical review : Bde
jgu.journal.volume106de
jgu.journal.issue9de
jgu.pages.alternative094430de
jgu.publisher.year2022-
jgu.publisher.nameAPSde
jgu.publisher.placeRidge, NYde
jgu.publisher.issn2469-9950de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
dc.date.updated2023-05-15T08:24:26Z-
jgu.publisher.doi10.1103/PhysRevB.106.094430de
elements.object.id148807-
elements.object.labels02 Physical Sciences-
elements.object.labels03 Chemical Sciences-
elements.object.labels09 Engineering-
elements.object.labelsFluids & Plasmas-
elements.object.labels34 Chemical sciences-
elements.object.labels40 Engineering-
elements.object.labels51 Physical sciences-
elements.object.typejournal-article-
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
straininduced_shape_anisotrop-20230515102427715.pdf3.52 MBAdobe PDFView/Open