Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8265
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSchmidt-Kaler, Ferdinand-
dc.contributor.authorPijn, Daniël Riemer Maria-
dc.date.accessioned2022-12-01T10:09:56Z-
dc.date.available2022-12-01T10:09:56Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8281-
dc.description.abstractAs noisy intermediate-scale quantum (NISQ) processors are becoming more widely available, techniques are being developed for scalable benchmarking of such systems. Thermodynamics-based methods form a very suitable complementary toolset as they naturally scale for larger numbers of particles. The established concept of passivity has thus far not been used to set bounds on the evolution of microscopic systems initialized in thermal states. In this work, I employ two passivity-related frameworks to sense the coupling to an otherwise undetected environment, which is coined a heat leak. For the application of both frameworks, global passivity and passivity deformation, two system qubits are undergoing unitary evolution. The optional coupling to a third environmental qubit is detected as non-unitary evolution of the system qubits. Important for the experimental realization of these thermodynamic algorithms is fast initialization of qubits in thermal (incoherent) states, which I added to the toolbox of the trapped ion platform. The employed quantum processor is based in a segmented linear ion trap, making use of high-fidelity laser-driven operations, and featuring <100 µs preparation times for multi-qubit coherent and incoherent states. As part of this work, I characterized and optimized the main entanglement-seeding operation - the light-shift gate - for robustness, resulting in a 12-hour average cycle benchmarking success rate of 99.48(5)%, enabling high-fidelity long-term measurements. Of high importance for such improvement is the addition of an active magnetic field stabilization, achieving fluctuations below 100 nT, and allowing for phase-stable measurements longer than 15 ms. Taking advantage of the improved operation of the trapped ion quantum processor, I have realized both passivity-based algorithms. It is shown that global passivity can verify the presence of a heat leak where a test using a microscopic version of the Clausius equation fails. Passivity deformation allows for even more sensitive detection of heat leaks, and identifies a heat leak with an error margin of 5.3 standard deviations, in a scenario where both the detection based on the Clausius equation and that based on global passivity fail. My work paves the way for experimental use of passivity-based methods to characterize quantum computers in the NISQ era.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc000 Allgemeinesde_DE
dc.subject.ddc000 Generalitiesen_GB
dc.subject.ddc500 Naturwissenschaftende_DE
dc.subject.ddc500 Natural sciences and mathematicsen_GB
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.subject.ddc600 Technikde_DE
dc.subject.ddc600 Technology (Applied sciences)en_GB
dc.titleThermodynamics in trapped ion quantum processorsen_GB
dc.typeDissertationde
dc.identifier.urnurn:nbn:de:hebis:77-openscience-7c095a9e-acdd-4395-a6cf-a77be749b3910-
dc.identifier.doihttp://doi.org/10.25358/openscience-8265-
jgu.type.dinitypedoctoralThesisen_GB
jgu.type.versionOriginal workde
jgu.type.resourceTextde
jgu.date.accepted2022-11-28-
jgu.description.extent118 Seiten ; Illustrationen, Diagrammede
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.organisation.placeMainz-
jgu.subject.ddccode000de
jgu.subject.ddccode500de
jgu.subject.ddccode530de
jgu.subject.ddccode600de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
thermodynamics_in_trapped_ion-20221111114508307.pdf9.01 MBAdobe PDFView/Open