Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://doi.org/10.25358/openscience-8265
Autoren: Pijn, Daniël Riemer Maria
Hauptberichter: Schmidt-Kaler, Ferdinand
Titel: Thermodynamics in trapped ion quantum processors
Online-Publikationsdatum: 1-Dez-2022
Erscheinungsdatum: 2022
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: As noisy intermediate-scale quantum (NISQ) processors are becoming more widely available, techniques are being developed for scalable benchmarking of such systems. Thermodynamics-based methods form a very suitable complementary toolset as they naturally scale for larger numbers of particles. The established concept of passivity has thus far not been used to set bounds on the evolution of microscopic systems initialized in thermal states. In this work, I employ two passivity-related frameworks to sense the coupling to an otherwise undetected environment, which is coined a heat leak. For the application of both frameworks, global passivity and passivity deformation, two system qubits are undergoing unitary evolution. The optional coupling to a third environmental qubit is detected as non-unitary evolution of the system qubits. Important for the experimental realization of these thermodynamic algorithms is fast initialization of qubits in thermal (incoherent) states, which I added to the toolbox of the trapped ion platform. The employed quantum processor is based in a segmented linear ion trap, making use of high-fidelity laser-driven operations, and featuring <100 µs preparation times for multi-qubit coherent and incoherent states. As part of this work, I characterized and optimized the main entanglement-seeding operation - the light-shift gate - for robustness, resulting in a 12-hour average cycle benchmarking success rate of 99.48(5)%, enabling high-fidelity long-term measurements. Of high importance for such improvement is the addition of an active magnetic field stabilization, achieving fluctuations below 100 nT, and allowing for phase-stable measurements longer than 15 ms. Taking advantage of the improved operation of the trapped ion quantum processor, I have realized both passivity-based algorithms. It is shown that global passivity can verify the presence of a heat leak where a test using a microscopic version of the Clausius equation fails. Passivity deformation allows for even more sensitive detection of heat leaks, and identifies a heat leak with an error margin of 5.3 standard deviations, in a scenario where both the detection based on the Clausius equation and that based on global passivity fail. My work paves the way for experimental use of passivity-based methods to characterize quantum computers in the NISQ era.
DDC-Sachgruppe: 000 Allgemeines
000 Generalities
500 Naturwissenschaften
500 Natural sciences and mathematics
530 Physik
530 Physics
600 Technik
600 Technology (Applied sciences)
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 08 Physik, Mathematik u. Informatik
Veröffentlichungsort: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-8265
URN: urn:nbn:de:hebis:77-openscience-7c095a9e-acdd-4395-a6cf-a77be749b3910
Version: Original work
Publikationstyp: Dissertation
Nutzungsrechte: CC BY
Informationen zu den Nutzungsrechten: https://creativecommons.org/licenses/by/4.0/
Umfang: 118 Seiten ; Illustrationen, Diagramme
Enthalten in den Sammlungen:JGU-Publikationen

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
Miniaturbild
thermodynamics_in_trapped_ion-20221111114508307.pdf9.01 MBAdobe PDFÖffnen/Anzeigen