Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-7873
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEckardt, Michael-
dc.contributor.authorBehrends, Jan-
dc.contributor.authorMünter, Detlef-
dc.contributor.authorHarneit, Wolfgang-
dc.date.accessioned2022-10-06T07:28:04Z-
dc.date.available2022-10-06T07:28:04Z-
dc.date.issued2015-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7888-
dc.description.abstractElectrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleCompact electrically detected magnetic resonance setupen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-7873-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleAIP Advancesde
jgu.journal.volume5de
jgu.journal.issue4de
jgu.pages.alternativeArt. 047139de
jgu.publisher.year2015-
jgu.publisher.nameAmerican Inst. of Physicsde
jgu.publisher.placeNew York, NYde
jgu.publisher.urihttp://dx.doi.org/10.1063/1.4919247de
jgu.publisher.issn2158-3226de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
opus.date.modified2018-08-10T07:49:09Z-
opus.subject.dfgcode07-307-
opus.organisation.stringFB 09: Chemie, Pharmazie und Geowissenschaften: Institut für Physikalische Chemiede_DE
opus.identifier.opusid50866-
opus.institute.number0906-
opus.metadataonlyfalse-
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN
opus.affiliatedEckardt, Michael-
opus.affiliatedHarneit, Wolfgang-
jgu.publisher.doi10.1063/1.4919247de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:DFG-OA-Publizieren (2012 - 2017)

Files in This Item:
  File Description SizeFormat
Thumbnail
compact_electrically_detected-20220915065455895.pdf1.53 MBAdobe PDFView/Open