Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-7143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRieger, Florian C.-
dc.contributor.authorVirnau, Peter-
dc.date.accessioned2022-06-14T07:47:45Z-
dc.date.available2022-06-14T07:47:45Z-
dc.date.issued2016
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7157-
dc.description.abstractWe develop a coarse-grained model of double-stranded DNA which is solely based on experimentally determined knotting probabilities of short DNA strands. Our analysis is motivated by the emergence of DNA nanopore sequencing technology. The main advantage of nanopore sequencing in comparison to next-generation devices is its capability to sequence rather long DNA strands in a single run, currently up to ≈10,000 base pairs. Unfortunately, long DNA strands easily self-entangle into knotted conformations, and sequencing knotted DNA with nanopores may be subject to error. In our manuscript, the typical extent and likelihood of DNA knots is computed for DNA chains of up to half a million base pairs, and we estimate the abundance of complex and composite knots in relation to DNA length. Our analysis indicates that DNA knots may be a formidable roadblock for the development of devices which support substantially longer read lengths. We also show that structural properties of DNA, like its resistance to bending, are intimately linked to the molecule's tendency to form knots. We demonstrate how this connection can be utilized to introduce mathematical models of DNA which account for the molecule's overall statistical properties.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleA Monte Carlo study of knots in long double-stranded DNA chainsen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-7143-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePLoS Computational Biologyde
jgu.journal.volume12de
jgu.journal.issue9de
jgu.pages.alternativee1005029de
jgu.publisher.year2016-
jgu.publisher.namePublic Library of Sciencede
jgu.publisher.placeSan Francisco, Calif.de
jgu.publisher.urihttp://dx.doi.org/10.1371/journal.pcbi.1005029de
jgu.publisher.issn1553-7358de
jgu.publisher.issn1553-734Xde
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
opus.date.modified2018-08-22T10:10:26Z
opus.subject.dfgcode00-000
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.identifier.opusid55145
opus.institute.number0801
opus.metadataonlyfalse
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN
opus.affiliatedVirnau, Peter
jgu.publisher.doi10.1371/journal.pcbi.1005029de
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:DFG-OA-Publizieren (2012 - 2017)

Files in This Item:
  File Description SizeFormat
Thumbnail
a_monte_carlo_study_of_knots_-20220612155548359.pdf1.52 MBAdobe PDFView/Open