Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-6581
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWinkler, Thomas Brian-
dc.contributor.authorLitzius, Kai-
dc.contributor.authorDe Lucia, Andrea-
dc.contributor.authorWeissenhofer, Markus-
dc.contributor.authorFangohr, Hans-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2021-12-01T08:28:59Z-
dc.date.available2021-12-01T08:28:59Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/6591-
dc.description.abstractIn this work, we explore the stability of magnetic skyrmions confined in a disk geometry by analyzing how to switch a skyrmionic state in a circular disk into a uniformly magnetized state when applying an external magnetic field. The technologically highly relevant energy barrier between the skyrmion state and the uniformly magnetized state is a key parameter needed for lifetime calculations. In an infinite sample, this relates to the out-of-plane rupture field against the skyrmion-core direction, while in confined geometries the topological charge can also be changed by interactions with the sample edges. We find that annihilating a skyrmion with an applied field in the direction of the core magnetization-we call this expulsion-the energy barrier to the uniform state is generally around one order of magnitude lower than the annihilation via the rupture of the core in the disk center, which is observed when the applied field is acting in the direction opposite to the core magnetization. For the latter case a Bloch point (BP) needs to be nucleated to change the topological charge to zero. We find that the former case can be realistically calculated using micromagnetic simulations but that the annihilation via rupture, involving a Bloch point, needs to be calculated with the Heisenberg model because the high magnetization gradients present during the annihilation process cannot be accurately described within the micromagnetic framework.en_GB
dc.language.isoengde
dc.rightsInCopyright*
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleSkyrmion states in disk geometryen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-6581-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionAccepted versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePhysical review appliedde
jgu.journal.volume16de
jgu.journal.issue4de
jgu.pages.alternative044014de
jgu.publisher.year2021-
jgu.publisher.nameAmerican Physical Societyde
jgu.publisher.placeCollege Park, Md. u.a.de
jgu.publisher.urihttps://doi.org/10.1103/PhysRevApplied.16.044014de
jgu.publisher.issn2331-7019de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1103/PhysRevApplied.16.044014
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
winkler_thomas_brian-skyrmion_state-20211129101309167.pdf2.82 MBAdobe PDFView/Open