Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5605
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartina, Kirilova-
dc.contributor.authorToy, Virginia-
dc.contributor.authorSauer, Katrina-
dc.contributor.authorRenard, François-
dc.contributor.authorGessner, Klaus-
dc.contributor.authorWirth, Richard-
dc.contributor.authorXiao, Xianghui-
dc.contributor.authorMatsumura, Risa-
dc.date.accessioned2021-01-28T11:17:24Z-
dc.date.available2021-01-28T11:17:24Z-
dc.date.issued2020-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5609-
dc.description.abstractPorosity reduction in rocks from a fault core can cause elevated pore fluid pressures and consequently influence the recurrence time of earthquakes. We investigated the porosity distribution in the New Zealand's Alpine Fault core in samples recovered during the first phase of the Deep Fault Drilling Project (DFDP-1B) by using two-dimensional nanoscale and three-dimensional microscale imaging. Synchrotron X-ray microtomography-derived analyses of open pore spaces show total microscale porosities in the range of 0.1 %–0.24 %. These pores have mainly non-spherical, elongated, flat shapes and show subtle bipolar orientation. Scanning and transmission electron microscopy reveal the samples' microstructural organization, where nanoscale pores ornament grain boundaries of the gouge material, especially clay minerals. Our data imply that (i) the porosity of the fault core is very small and not connected; (ii) the distribution of clay minerals controls the shape and orientation of the associated pores; (iii) porosity was reduced due to pressure solution processes; and (iv) mineral precipitation in fluid-filled pores can affect the mechanical behavior of the Alpine Fault by decreasing the already critically low total porosity of the fault core, causing elevated pore fluid pressures and/or introducing weak mineral phases, and thus lowering the overall fault frictional strength. We conclude that the current state of very low porosity in the Alpine Fault core is likely to play a key role in the initiation of the next fault rupture.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin Mainzde
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.en*
dc.subject.ddc550 Geowissenschaftende_DE
dc.subject.ddc550 Earth sciencesen_GB
dc.titleMicro- and nano-porosity of the active Alpine Fault zone, New Zealanden_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5605-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleSolid earthde
jgu.journal.volume11de
jgu.journal.issue6de
jgu.pages.start2425de
jgu.pages.end2438de
jgu.publisher.year2020-
jgu.publisher.nameCopernicus Publ.de
jgu.publisher.placeGöttingende
jgu.publisher.urihttps://doi.org/10.5194/se-11-2425-2020de
jgu.publisher.issn1869-9529de
jgu.organisation.placeMainz-
jgu.subject.ddccode550de
jgu.publisher.doi10.5194/se-11-2425-2020
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
martina_kirilova-micro-_and_nan-20210128121057932.pdf14.14 MBAdobe PDFView/Open