Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKerber, Nico-
dc.contributor.authorKsenzov, Dmitriy-
dc.contributor.authorFreimuth, Frank-
dc.contributor.authorCapotondi, Flavio-
dc.contributor.authorPedersoli, Emanuele-
dc.contributor.authorLopez-Quintas, Ignacio-
dc.contributor.authorSeng, Boris-
dc.contributor.authorCramer, Joel-
dc.contributor.authorLitzius, Kai-
dc.contributor.authorLacour, Daniel-
dc.contributor.authorZabel, Hartmut-
dc.contributor.authorMokrousov, Yuriy-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorGutt, Christian-
dc.date.accessioned2021-01-15T11:14:26Z-
dc.date.available2021-01-15T11:14:26Z-
dc.date.issued2020-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5563-
dc.description.abstractWhile chiral spin structures stabilized by Dzyaloshinskii-Moriya interaction (DMI) are candidates as novel information carriers, their dynamics on the fs-ps timescale is little known. Since with the bulk Heisenberg exchange and the interfacial DMI two distinct exchange mechanisms are at play, the ultrafast dynamics of the chiral order needs to be ascertained and compared to the dynamics of the conventional collinear order. Using an XUV free-electron laser we determine the fs-ps temporal evolution of the chiral order in domain walls in a magnetic thin film sample by an IR pump - X-ray magnetic scattering probe experiment. Upon demagnetization we observe that the dichroic (CL-CR) signal connected with the chiral order correlator m(z)m(x) in the domain walls recovers significantly faster than the (CL+CR) sum signal representing the average collinear domain magnetization m(z)(2)+m(x)(2). We explore possible explanations based on spin structure dynamics and reduced transversal magnetization fluctuations inside the domain walls and find that the latter can explain the experimental data leading to different dynamics for collinear magnetic order and chiral magnetic order. Chiral spin structures have great promise for future information processing applications, however little is known about their ultrafast dynamics. In this experimental study, the authors use femtosecond temporal evolution to observe the fast recovery of chiral magnetic order.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleFaster chiral versus collinear magnetic order recovery after optical excitation revealed by femtosecond XUV scatteringen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5559-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNature communicationsde
jgu.journal.volume11de
jgu.pages.alternative6304de
jgu.publisher.year2020-
jgu.publisher.nameNature Publishing Group UKde
jgu.publisher.placeLondonde
jgu.publisher.urihttps://doi.org/10.1038/s41467-020-19613-zde
jgu.publisher.issn2041-1723de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1038/s41467-020-19613-z
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
kerber_nico-faster_chiral_-20210115100755843.pdf1.83 MBAdobe PDFView/Open