Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalappattil, Vijaysankar-
dc.contributor.authorGeng, Rugang-
dc.contributor.authorDas, Raja-
dc.contributor.authorPham, Minh-
dc.contributor.authorLuong, Hoang-
dc.contributor.authorNguyen, Toa-
dc.contributor.authorPopescu, Adrian-
dc.contributor.authorWoods, Lilia M.-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorSrikanth, Hariharan-
dc.contributor.authorPhan, Manh-Huong-
dc.date.accessioned2021-12-06T09:25:26Z-
dc.date.available2021-12-06T09:25:26Z-
dc.date.issued2020-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5329-
dc.description.abstractInterfacing an organic semiconductor C-60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C-60 in between a magnetic insulator (Y3Fe5O12:YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C-60 reduces significantly the conductivity mismatch between YIG and Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to enhanced spin mixing conductance across YIG/C-60/Pt interfaces. As a result, a 600% increase in the SSE voltage (V-LSSE) has been realized in YIG/C-60/Pt relative to YIG/Pt. Temperature-dependent SSE voltage measurements on YIG/C-60/Pt with varying C-60 layer thicknesses also show an exponential increase in V-LSSE at low temperatures below 200 K, resembling the temperature evolution of spin diffusion length of C-60. Our study emphasizes the important roles of the magnetic anisotropy and the spin diffusion length of the intermediate layer in the SSE in YIG/C-60/Pt structures, providing a new pathway for developing novel spin-caloric materials.en_GB
dc.language.isoengde
dc.rightsInCopyright*
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleGiant spin Seebeck effect through an interface organic semiconductoren_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5325-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionAccepted versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleMaterials Horizonsde
jgu.journal.volume7de
jgu.journal.issue5de
jgu.pages.start1413de
jgu.pages.end1420de
jgu.publisher.year2020-
jgu.publisher.nameRSC Publ.de
jgu.publisher.placeCambridgede
jgu.publisher.urihttps://doi.org/10.1039/C9MH01498Ede
jgu.publisher.issn2051-6347de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1039/C9MH01498E
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
kalappattil_v-giant_spin_see-20201110134920739.pdf923.31 kBAdobe PDFView/Open