Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVogel, Nicolas
dc.description.abstractThis thesis focuses on the controlled assembly of monodisperse polymer colloids into ordered two-dimensional arrangements. These assemblies, commonly referred to as colloidal monolayers, are subsequently used as masks for the generation of arrays of complex metal nanostructures on solid substrates.rnThe motivation of the research presented here is twofold. First, monolayer crystallization methods were developed to simplify the assembly of colloids and to produce more complex arrangements of colloids in a precise way. Second, various approaches to colloidal lithography are designed with the aim to include novel features or functions to arrays of metal nanostructures.rnThe air/water interface was exploited for the crystallization of colloidal monolayer architectures as it combines a two-dimensional confinement with a high lateral mobility of the colloids that is beneficial for the creation of high long range order. A direct assembly of colloids is presented that provides a cheap, fast and conceptually simple methodology for the preparation of ordered colloidal monolayers. The produced two-dimensional crystals can be transformed into non-close-packed architectures by a plasma-induced size reduction step, thus providing valuable masks for more sophisticated lithographic processes. Finally, the controlled co-assembly of binary colloidal crystals with defined stoichiometries on a Langmuir trough is introduced and characterized with respect to accessible configurations and size ratios. rnSeveral approaches to lithography are presented that aim at introducing different features to colloidal lithography. First, using metal-complex containing latex particles, the synthesis of which is described as well, symmetric arrays of metal nanoparticles can be created by controlled combustion of the organic material of the colloids. The process does not feature an inherent limit in nanoparticle size and is able to produce complex materials as will be demonstrated for FePt alloy particles. Precise control over both size and spacing of the particle array is presented. rnSecond, two lithographic processes are introduced to create sophisticated nanoparticle dimer units consisting of two crescent shaped nanostructures in close proximity; essentially by using a single colloid as mask to generate two structures simultaneously. Strong coupling processes of the parental plasmon resonances of the two objects are observed that are accompanied by high near-field enhancements. A plasmon hybridization model is elaborated to explain all polarization dependent shifts of the resonance positions. Last, a technique to produce laterally patterned, ultra-flat substrates without surface topographies by embedding gold nanoparticles in a silicon dioxide matrix is applied to construct robust and re-usable sensing architectures and to introduce an approach for the nanoscale patterning of solid supported lipid bilayer membranes. rnen_GB
dc.description.abstractDie vorliegende Arbeit beschaeftigt sich mit der kontrollierten Strukturierung von Oberflaechen mit Kolloid-Monolagen. Verschiedene Aspekte solcher Strukturierungen werden vorgestellt, die sich in zwei Themengebiete untergliedern lassen. Zum einen werden Methoden zur Abscheidung von solchen Kolloidmonolagen auf festen Substraten vorgestellt. Zum anderen werden mehrere Ansaetze zu lithographischen Strukturierungsverfahren basierend auf Kolloidmonolagen vorgestellt. Im ersten Themenblock werden drei Ansaetze zur zweidimensionalen Kristallisation von Kolloiden entwickelt, die sich in der Komplexitaet und Struktur der Monolagen unterscheiden. Ein einfacher Ansatz zur Kristallisation von dichtgepackten, hochgeordneten Monolagen basierend auf einer spontanen Anordnung von Kolloiden an der Luft/Wasser Grenzflaeche wird beschrieben. Der "Monolayer to go" genannte Ansatz ist eine der einfachsten Arten, homogene Monolagen ueber grosse Flaechen und mit hoher Ordnung zu kristallisieren und kann ohne experimentellen Aufwand oder besondere Hilfsmittel einfach im Labor durchgefuehrt werden. Eine Plasmabehandlung solcher Monolagen fuehrt direkt zu nicht-dicht gepackten Monolagen, die im zweiten Teil zur Erzeugung komplexer metallischer Nanopartikel verwendet werden. Schliesslich wird eine Methode entwickelt, um gezielt und reproduzierbar symmetrische, binaere Monolagen herzustellen. Um die Stoechioemetrie der binaeren Kristalle korrekt einzustellen, muss der Bruchteil der Kolloide an der Grenzflaeche fuer alle verschiedenen verwendeten Kolloiddispersionen einzeln aus den Isothermen eines Langmuir-Trogs bestimmt werden. Im zweiten Teil der Arbeit werden lithographische Verfahren basierend auf Kolloid-Monolagen beschrieben. Drei Ansaetze werden verfolgt. Aus homogenen, dicht-gepackten Monolagen werden eingebettete Dreicks- Nanostrukturen mittels eines template-stripping Prozesses hergestellt. Diese koennen als extrem robuste, wiederverwendbare Sensoren und als Substrate zur Strukturierung von Lipid-Doppelschichtmembranen mit Nanometer-Dimensionen verwendet werden. Desweiteren werden zwei Prozesse beschrieben, um aus nicht-dicht gepackten Monolagen dimere Hoernchenstrukturen herzustellen. Solche komplexen metallischen Nanostrukturen zeichnen sich durch interessante optische Eigenschaften aus. Durch den geringen Abstand der zwei Hoernchen in den dimeren Strukturen laesst sich eine Plasmonenhybridisierung beobachten. Letztlich werden Metallkomplrx-haltige Monolagen in einem nicht-konventionellen Verfahren verwendet, um metallische Nanostrukturen durch kontrolliertes Verbrennen der organischen Bestandteile der Kolloide zu erhalten.de_DE
dc.rightsin Copyrightde_DE
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleSurface patterning with colloidal monolayersen_GB
jgu.type.versionOriginal worken_GB
jgu.description.extent251 S.
jgu.organisation.departmentExterne Einrichtungen-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
opus.organisation.stringExterne Einrichtungen: Max-Plank-Institut für Polymerforschungde_DE
Appears in collections:JGU-Publikationen

Files in This Item:
File SizeFormat 
2887.pdf30.8 MBAdobe PDFView/Open