Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-468
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPirie, Michael
dc.date.accessioned2017-06-14T09:28:23Z
dc.date.available2017-06-14T11:28:23Z
dc.date.issued2017
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/470-
dc.description.abstractHybridisation is an important process in plant evolution, its impact apparent at all levels from the genome duplications shared by all angiosperms through to recent speciation events. Patterns of inheritance caused by hybridisation (and other reticulate processes) appear to be incompatible with one of the fundamental tools of evolutionary biologists and ecologists seeking to understand the evolution of biological diversity: the phylogenetic tree. The current paradigm for inferring relatedness of organisms – the ‘species tree’ – can be summed up in one word: coalescence. Current analytical approaches serve to bias against inferring reticulate processes, even though they may be common and of direct importance both for the evolutionary process itself and for the performance of methods used to infer it. I present a brief account of current methodologies and draw on examples from both plant and virus datasets to illustrate the importance of reticulate processes in evolutionary inference. An example from danthonioid grasses shows how our inference of the direction and frequency of long distance dispersal events can be impacted by post-dispersal hybridisation; one from the northern heathers (genus Erica) shows the impact on interpretations of morphological evolution. In viruses, recombination can lead to pathogenic strains, and our ability to infer this process, even on human timescales, is dependent on correctly interpreting differences between gene trees. I illustrate an easily implemented approach that may be used to infer the sequence and timing of gene and genome divergences given conflict between individual gene trees, even when the processes underlying that conflict cannot be distinguished. It can in principle be applied to any group of organisms and can be extended to explicitly model both reticulation and coalescence without prior knowledge of the species tree topology.en_GB
dc.language.isoeng
dc.rightsInCopyrightde_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc580 Pflanzen (Botanik)de_DE
dc.subject.ddc580 Botanical sciencesen_GB
dc.titleInferring species trees given coalescence and reticulationen_GB
dc.typeHabilitationsschriftde_DE
dc.identifier.urnurn:nbn:de:hebis:77-publ-567745
dc.identifier.doihttp://doi.org/10.25358/openscience-468-
jgu.type.dinitypedoctoralThesis
jgu.type.versionOriginal worken_GB
jgu.type.resourceText
jgu.description.extent48 S.
jgu.organisation.departmentFB 10 Biologie-
jgu.organisation.year2017
jgu.organisation.number7970-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.organisation.placeMainz-
jgu.subject.ddccode580
opus.date.accessioned2017-06-14T09:28:23Z
opus.date.modified2017-06-20T07:11:11Z
opus.date.available2017-06-14T11:28:23
opus.subject.dfgcode03-202
opus.organisation.stringFB 10: Biologie: Institut für Organismische und Molekulare Evolutionsbiologiede_DE
opus.identifier.opusid56774
opus.institute.number1011
opus.metadataonlyfalse
opus.type.contenttypeHabilitationde_DE
opus.type.contenttypeProfessorial Dissertationen_GB
opus.affiliatedPirie, Michael
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
56774.pdf3.11 MBAdobe PDFView/Open