Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Miao
dc.description.abstractUnderstanding the origins of the mechanical properties and its correlation withrnthe microstructure of gel systems is of great scientific and industrial interest. Inrngeneral, colloidal gels can be classified into chemical and physical gels, accordingrnto the life time of the network bonds. The characteristic diâ µerences in gelationrndynamics can be observed with rheological measurements.rnAs a model system, a mixture of sodium silicate and low concentration sulfuric acidrnwas used. Nano-sized silica particles grow and aggregate to a system-spanning gelrnnetwork. The influence of the finite solubility of silica at high pH on the gelationrnwas studied with classical and piezo rheometer. The storage modulus of therngel grew logarithmically with time with two distinct growth laws. A relaxationrnat low frequency was observed in the frequency dependent measurements. I attributernthese two behaviors as a sign of structural rearrangements due to the finiternsolubility of silica at high pH. The reaction equilibrium between formation andrndissolution of bonds leads to a finite life time of the bonds and behavior similar tornphysical gel. The frequency dependence was more pronounced for lower water concentrations,rnhigher temperatures and shorter reaction times. With two relaxationrnmodels, I deduced characteristic relaxation times from the experimental data. Besidesrnrheology, the evolution of silica gels at high pH on diâ µerent length scales wasrnstudied by NMR and dynamic light scattering. The results revealed that the primaryrnparticles existed already in sodium silicate and aggregated after the mixingrnof reactants due to a chemical reaction. Throughout the aggregation process thernsystem was in its chemical reaction equilibrium. Applying large oscillatory shearrnstrain to the gel allowed for modifying the gel modulus. The eâ µect of shear andrnshear history on the rheological properties of the gel were investigated. The storagernmodulus of the final gel increased with increasing strain. This behavior can be explained with (i) shear-induced aggregate compaction and (ii) combination ofrnbreakage and new formation of bonds.rnIn comparison with the physical gel-like behavior of the silica gel at high pH, typicalrnchemical gel features were exhibited by other gels formed from various chemicalrnreactions. Influences of the chemical structure modification on the gelation wererninvestigated with the piezo-rheometer. The external stimuli can be applied to tunernthe mechanical properties of the gel systems.en_GB
dc.rightsin Copyrightde_DE
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleMechanical properties and structure of gel systemsen_GB
jgu.type.versionOriginal worken_GB
jgu.description.extent115 S.
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
opus.organisation.stringFB 09: Chemie, Pharmazie und Geowissenschaften: Institut für Physikalische Chemiede_DE
Appears in collections:JGU-Publikationen

Files in This Item:
File SizeFormat 
3787.pdf18.16 MBAdobe PDFView/Open