Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiss, Daniel-
dc.contributor.authorMoulas, Evangelos-
dc.contributor.authorKaus, Boris-
dc.contributor.authorSpang, Arne-
dc.date.accessioned2023-06-13T09:29:23Z-
dc.date.available2023-06-13T09:29:23Z-
dc.date.issued2023-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9188-
dc.description.abstractStudies of host rock deformation around magmatic intrusions usually focus on the development of stresses directly related to the intrusion process. This is done either by considering an inflating region that represents the intruding body, or by considering multiphase deformation. Thermal processes, especially volume changes caused by thermal expansion are typically ignored. We show that thermal stresses around upper crustal magma bodies are likely to be significant and sufficient to create an extensive fracture network around the magma body by brittle yielding. At the same time, cooling induces decompression within the intrusion, which can promote the appearance of a volatile phase. Volatile phases and the development of a fracture network around the inclusion may thus be the processes that control magmatic-hydrothermal alteration around intrusions. This suggests that thermal stresses likely play an important role in the development of magmatic systems. To quantify the magnitude of thermal stresses around cooling intrusions, we present a fully compressible 2D visco-elasto-plastic thermo-mechanical numerical model. We utilize a finite difference staggered grid discretization and a graphics processing unit based pseudo-transient solver. First, we present purely thermo-elastic solutions, then we include the effects of viscous relaxation and plastic yielding. The dominant deformation mechanism in our models is determined in a self-consistent manner, by taking into account stress, pressure, and temperature conditions. Using experimentally determined flow laws, the resulting thermal stresses can be comparable to or even exceed the confining pressure. This suggests that thermal stresses alone could result in the development of a fracture network around magmatic bodies.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin-
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc550 Geowissenschaftende_DE
dc.subject.ddc550 Earth sciencesen_GB
dc.titleDecompression and fracturing caused by magmatically induced thermal stressesen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-9171-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleJournal of geophysical research : B, Solid earthde
jgu.journal.volume128de
jgu.journal.issue3de
jgu.pages.alternativee2022JB025341de
jgu.publisher.year2023-
jgu.publisher.nameUnionde
jgu.publisher.placeWashington, DCde
jgu.publisher.issn2169-9313de
jgu.organisation.placeMainz-
jgu.subject.ddccode550de
dc.date.updated2023-06-07T08:03:37Z-
jgu.publisher.doi10.1029/2022JB025341de
elements.object.id153877-
elements.object.labels0402 Geochemistry-
elements.object.labels0403 Geology-
elements.object.labels0404 Geophysics-
elements.object.labels3705 Geology-
elements.object.labels3706 Geophysics-
elements.object.typejournal-article-
jgu.organisation.rorhttps://ror.org/023b0x485-
jgu.subject.dfgLebenswissenschaftende
Appears in collections:DFG-491381577-H

Files in This Item:
  File Description SizeFormat
Thumbnail
decompression_and_fracturing_-20230607100337621.pdfPublished version3.92 MBAdobe PDFView/Open