Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaab, Klaus-
dc.contributor.authorBrems, Maarten A.-
dc.contributor.authorBeneke, Grischa-
dc.contributor.authorDohi, Takaaki-
dc.contributor.authorRothörl, Jan-
dc.contributor.authorKammerbauer, Fabian-
dc.contributor.authorMentink, Johan H.-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2023-03-29T14:28:09Z-
dc.date.available2023-03-29T14:28:09Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8821-
dc.description.abstractReservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated and thermal skyrmion motion, we find that already a single skyrmion in a confined geometry suffices to realize nonlinearly separable functions, which we demonstrate for the XOR gate along with all other Boolean logic gate operations. Besides this universality, the reservoir computing concept ensures low training costs and ultra-low power operation with current densities orders of magnitude smaller than those used in existing spintronic reservoir computing demonstrations. Our proposed concept is robust against device imperfections and can be readily extended by linking multiple confined geometries and/or by including more skyrmions in the reservoir, suggesting high potential for scalable and low-energy reservoir computing.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleBrownian reservoir computing realized using geometrically confined skyrmion dynamicsen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-8805-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNature Communicationsde
jgu.journal.volume13de
jgu.pages.alternative6982de
jgu.publisher.year2022-
jgu.publisher.nameSpringer Naturede
jgu.publisher.placeLondonde
jgu.publisher.issn2041-1723de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1038/s41467-022-34309-2de
jgu.organisation.rorhttps://ror.org/023b0x485-
jgu.subject.dfgNaturwissenschaftende
Appears in collections:DFG-491381577-G

Files in This Item:
  File Description SizeFormat
Thumbnail
brownian_reservoir_computing_-20230216103816070.pdf1.1 MBAdobe PDFView/Open