Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaslyk, Marcel-
dc.contributor.authorDallos, Zsolt-
dc.contributor.authorKoziol, Martha-
dc.contributor.authorSeiffert, Sebastian-
dc.contributor.authorHieke, Tim-
dc.contributor.authorPetrovic, Katharina-
dc.contributor.authorKolb, Ute-
dc.contributor.authorMondeshki, Mihail-
dc.contributor.authorTremel, Wolfgang-
dc.date.accessioned2023-02-03T11:42:04Z-
dc.date.available2023-02-03T11:42:04Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8705-
dc.description.abstractCalcium sulfate is an important construction material. More than 1600 million square meters of interior surfaces are covered with plasterboards in Europe each year. Plasterboard is manufactured by transforming mined or recycled gypsum (CaSO4 × 2 H2O) to bassanite (CaSO4 × ½H2O) in a time- and energy-consuming heating process. A fast and sustainable way to produce bassanite by solvent-assisted milling, thereby eliminating the need for energy-intensive dehydration, is described. The milling reaction is complete after ≈200 min. Kinetic studies revealed that gypsum crystals transform to bassanite by shear forces during milling. 1H nuclear magnetic resonance (NMR) spectroscopic techniques and Fourier-transform infrared spectroscopy (FT-IR) show that the resulting bassanite nanocrystals are stabilized by surface functionalization with the auxiliary solvent methanol. Bassanite particles produced over extended milling times of 990 min form long-term stable dispersions without stabilizers and no signs of precipitation. Addition of water to bassanite leads to instant agglomeration, followed by a phase change to gypsum. The dispersibility in volatile methanol and the elucidation of the crystallization mechanism allow also for applications of the bassanite nanocrystals in hybrid materials.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.language.isoengde
dc.rightsCC BY-NC-ND*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleA fast and sustainable route to bassanite nanocrystals from gypsumen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-8689-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleAdvanced functional materialsde
jgu.journal.volume32de
jgu.journal.issue20de
jgu.pages.alternative2111852de
jgu.publisher.year2022-
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.issn1616-3028de
jgu.organisation.placeMainz-
jgu.subject.ddccode540de
jgu.publisher.doi10.1002/adfm.202111852de
jgu.organisation.rorhttps://ror.org/023b0x485-
jgu.subject.dfgNaturwissenschaftende
Appears in collections:DFG-491381577-H

Files in This Item:
  File Description SizeFormat
Thumbnail
a_fast_and_sustainable_route_-20230127130056886.pdfHauptdatei1.29 MBAdobe PDFView/Open
Thumbnail
a_fast_and_sustainable_route_-20230127130123081.pdfSupporting information1.64 MBAdobe PDFView/Open