Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-7331
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Jun-young-
dc.contributor.authorCramer, Joel-
dc.contributor.authorLee, Kyujoon-
dc.contributor.authorHan, Dong-Soo-
dc.contributor.authorGo, Dongwook-
dc.contributor.authorSalev, Pavel-
dc.contributor.authorLapa, Pavel N.-
dc.contributor.authorVargas, Nicolas M.-
dc.contributor.authorSchuller, Ivan K.-
dc.contributor.authorMokrousov, Yuriy-
dc.contributor.authorJakob, Gerhard-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2022-08-01T07:52:35Z-
dc.date.available2022-08-01T07:52:35Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7345-
dc.description.abstractThe emergence of spin-orbit torques as a promising approach to energy-efficient magnetic switching has generated large interest in material systems with easily and fully tunable spin-orbit torques. Here, current-induced spin-orbit torques in VO2/NiFe heterostructures are investigated using spin-torque ferromagnetic resonance, where the VO2 layer undergoes a prominent insulator-metal transition. A roughly twofold increase in the Gilbert damping parameter, alpha, with temperature is attributed to the change in the VO2/NiFe interface spin absorption across the VO2 phase transition. More remarkably, a large modulation (+/- 100%) and a sign change of the current-induced spin-orbit torque across the VO2 phase transition suggest two competing spin-orbit torque generating mechanisms. The bulk spin Hall effect in metallic VO2, corroborated by the first-principles calculation of the spin Hall conductivity sigma SH approximate to-104PLANCK CONSTANT OVER TWO PIe omega-1 m-1, is verified as the main source of the spin-orbit torque in the metallic phase. The self-induced/anomalous torque in NiFe, with opposite sign and a similar magnitude to the bulk spin Hall effect in metallic VO2, can be the other competing mechanism that dominates as temperature decreases. For applications, the strong tunability of the torque strength and direction opens a new route to tailor spin-orbit torques of materials that undergo phase transitions for new device functionalities.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleTuning spin-orbit torques across the phase transition in VO2/NiFe heterostructureen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-7331-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleAdvanced functional materialsde
jgu.journal.volume32de
jgu.journal.issue17de
jgu.pages.alternative2111555de
jgu.publisher.year2022-
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.issn1616-301Xde
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1002/adfm.202111555de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:DFG-491381577-H

Files in This Item:
  File Description SizeFormat
Thumbnail
tuning_spinorbit_torques_acro-20220715130304799.pdf4.26 MBAdobe PDFView/Open