Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-10132
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchmitt, Christin-
dc.contributor.authorRajan, Adithya-
dc.contributor.authorBeneke, Grischa-
dc.contributor.authorKumar, Aditya-
dc.contributor.authorSparmann, Tobias-
dc.contributor.authorMeer, Hendrik-
dc.contributor.authorBednarz, Beatrice-
dc.contributor.authorRamos, Rafael-
dc.contributor.authorNiño, Miguel Angel-
dc.contributor.authorFoerster, Michael-
dc.contributor.authorSaitoh, Eiji-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2024-02-29T11:26:03Z-
dc.date.available2024-02-29T11:26:03Z-
dc.date.issued2024-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/10150-
dc.description.abstractWe study current-induced switching of the Néel vector in CoO/Pt bilayers to understand the underlying antiferromagnetic switching mechanism. Surprisingly, we find that for ultrathin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing these results to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the details of the reorientation of the Néel vector in ultrathin CoO(4 nm). This allows us to understand how opposite resistance changes can result from a thermomagnetoelastic switching mechanism. Importantly, our spatially resolved imaging shows that regions where the current pulses are applied and regions further away exhibit different switched spin structures, which can be explained by a spin–orbit torque-based switching mechanism that can dominate in very thin films.en_GB
dc.language.isoengde
dc.rightsCC BY-NC-ND*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleMechanisms of electrical switching of ultrathin CoO/Pt bilayersen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-10132-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNano lettersde
jgu.journal.volume24de
jgu.journal.issue5de
jgu.pages.start1471de
jgu.pages.end1476de
jgu.publisher.year2024-
jgu.publisher.nameAmerican Chemical Societyde
jgu.publisher.placeWashington, DCde
jgu.publisher.issn1530-6992de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1021/acs.nanolett.3c02890de
jgu.organisation.rorhttps://ror.org/023b0x485-
jgu.subject.dfgNaturwissenschaftende
Appears in collections:DFG-491381577-H

Files in This Item:
  File Description SizeFormat
Thumbnail
mechanisms_of_electrical_swit-20240229122223633.pdf3.22 MBAdobe PDFView/Open