
Vol.:(0123456789)1 3

Archives of Toxicology (2021) 95:959–974 
https://doi.org/10.1007/s00204-021-02979-4

MOLECULAR TOXICOLOGY

Identification of potential novel drug resistance mechanisms 
by genomic and transcriptomic profiling of colon cancer cells with p53 
deletion

Onat Kadioglu1 · Mohamed Saeed1 · Nuha Mahmoud1 · Shaymaa Azawi2 · Kristin Mrasek2 · Thomas Liehr2 · 
Thomas Efferth1 

Received: 13 July 2020 / Accepted: 4 January 2021 / Published online: 30 January 2021 
© The Author(s) 2021

Abstract
TP53 (p53) is a pivotal player in tumor suppression with fifty percent of all invasive tumors displaying mutations in the TP53 
gene. In the present study, we characterized colon cancer cells (HCT116 p53 −/−) with TP53 deletion, a sub-line derived from 
HCT116-p53 +/+ cells. RNA sequencing and network analyses were performed to identify novel drug resistance mechanisms. 
Chromosomal aberrations were identified by multicolor fluorescence in situ hybridization (mFISH) and array comparative 
genomic hybridization (aCGH). Numerous genes were overexpressed in HCT116 p53 −/− cells: RND3/RhoE (235.6-fold 
up-regulated), DCLK1 (60.2-fold up-regulated), LBH (31.9-fold up-regulated), MYB (28.9-fold up-regulated), TACSTD2 
(110.1-fold down-regulated), NRIP1 (81.5-fold down-regulated) and HLA-DMB (69.7-fold down-regulated) are among the 
identified genes with potential influence on multidrug resistance (MDR) and they are associated with cancer progression 
and tumorigenesis, according to previously published studies. Probably due to TP53 deletion, disturbances in DNA repair 
and apoptosis are leading to aberrancies in cellular and organismal organization, ultimately increasing tumorigenesis and 
cancer progression potential. With NFκB, PI3K and HSP70, being at the center of merged protein network, and TH1-2 
pathways, being among the influenced pathways, it can be speculated that the inflammatory pathway contributes to a resist-
ance phenotype together with cell cycle regulation and heat-shock response. HCT116-p53 −/− cells have more chromosomal 
aberrations, gains and losses in copy numbers than HCT116-p53 +/+ cells. In conclusion, numerous genomic aberrations, 
which might be associated with yet unknown drug resistance mechanisms, were identified. This may have important impli-
cations for future treatment strategies.
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Abbreviations
aCGH	� Array comparative genomic hybridization
mFISH	� Multicolor fluorescence in situ hybridization

MDR	� Multidrug resistance
RNA-Seq	� RNA sequencing

Introduction

TP53 has been described as the guardian of the genome 
(Lane 1992). Upon detrimental damage caused by xeno-
biotic and carcinogenic substances, p53 maintains cellular 
integrity. Aberrations and damage in DNA are recognized 
by p53, leading to cell cycle arrest and DNA repair. In case 
of persistent damage exceeding the limit of cellular repair 
capability, p53 can trigger apoptosis. The mechanisms of 
apoptosis induced by p53 consist of transcriptional activa-
tion of FAS, KILLER/DR5, and the mitochondrial pathways 
(Green and Kroemer 2009). Furthermore, genes promoting 
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cell survival such as BCL2, IGFR, MCL-1, survivin and 
PIK3CA are inhibited by p53 (Oren 2003; Riley et al. 2008). 
P53 plays role in various downstream processes, in addition 
to apoptosis and growth arrest, after activation by post-trans-
lational modifications such as phosphorylation, acetylation, 
and methylation (Bode and Dong 2004). It functions as a 
transcription factor responsible for maintaining the genomic 
integrity by regulating cell cycle arrest, DNA repair, and/or 
apoptosis-related pathways. In terms of cell cycle regulation, 
p53 activates p21/WAF1, an inhibitor for G2/M-specific cell 
division control protein 2 kinase and cyclin-dependent G1 
kinase, subsequently leading to G2/M and G1 checkpoint 
control. Failure in arresting cells at both G1 and G2/M 
checkpoints due to mutated p53 can lead to drug resistance 
(Agarwal et al. 1995; Piovesan et al. 1998).

Both DNA repair and apoptosis mechanisms are essen-
tial to maintain a healthy condition in human cells. Under 
normal conditions, cells with excessive DNA damage or 
other aberrations are eliminated by apoptosis. If this con-
trol mechanism initiated by p53 is disrupted, abnormal 
cell proliferation with excessive DNA damage occurs. p53 
mutations are among the main reason for disrupted DNA 
repair and apoptosis, which may initiate tumorigenesis due 
to increased population of abnormal cells which are more 
prone to mutations and chromosomally unstable. Abnormal 
proliferation of those cells with accumulated DNA damage 
because of nonfunctional p53 also affects the subsequent 
generations of cells with additional mutations. Ultimately, 
this leads to an increased risk of carcinogenesis.

P53 is mutated in more than 50% of all human carcino-
mas, and colorectal cancer is among the cancer types with 
frequent deleterious p53 mutations (Baker et al. 1989). Most 
of the mutations occur in the DNA-binding domain and lead 
either to protein-misfolding or disruption of the DNA-bind-
ing ability (Hainaut et al. 1997). The loss of its apoptotic 
function is an important reason for the development of radio- 
and drug-resistant cancer cells (Bertheau et al. 2008; Chen 
et al. 2012). Moreover, tumors with p53 mutations are com-
monly characterized by aggravated metastasis and genomic 
instability (Liu et al. 2010; Muller and Vousden 2013). 
Additional oncogenic functions of mutant p53 include pro-
moting invasion, migration, angiogenesis and proliferation, 
which can lead to enhanced drug resistance and mitogenic 
defects (Muller and Vousden 2013). The above functions 
are just a few of the plethora of multiple pathways by which 
mutant p53 governs cancer progression (Muller and Vous-
den 2013). For instance, p53 has an impact also on drug 
metabolism (Krais et al. 2016; Wohak et al. 2018) and cell 
metabolism by limiting glycolysis and facilitating mitochon-
drial respiration (Gomes et al. 2018; Matsuura et al. 2016).

Resistance to multiple drugs has been well studied in 
ATP-binding cassette (ABC) transporters, which mediate 
the multidrug resistance (MDR) phenotype. Multiple drug 

resistance is, however not restricted to ABC transporters and 
other MDR phenomena have also been described, includ-
ing, p53, Bcl-2, the proliferation rate of tumors and others 
(Efferth et al. 2008; Hientz et al. 2017; Reed 1995). Micro-
array analyses were previously performed for HCT116 cell 
line (Bhattacharjee et al. 2005; Kabir et al. 2018; Khonthun 
et al. 2020; Ma et al. 2017), but the application of genom-
ics and transcriptomics methods to isogenic knockout cells 
allows a superior and deeper comparison between cell lines 
to identify novel drug resistance mechanisms.

In this study, we applied RNA sequencing, array com-
parative genomic hybridization (aCGH) and multicolor fluo-
rescence in situ hybridization (mFISH) to analyze HCT116 
p53 +/+ colon cancer cells and its drug-resistant subline 
with p53 deletion, HCT116 p53 −/−, to characterize genes, 
pathways, protein networks and chromosomal aberrations 
responsible for drug resistance in the HCT116 p53 −/− cell 
line. Overall, this study shall provide a better overview of 
the full complexity of mechanisms and genetic alterations in 
colon cancer cells and their contribution to drug resistance 
that occurred upon p53 deletion.

Materials and methods

Cell culture

HCT116 p53+/+ and its drug-resistant HCT116 p53 −/− sub-
line, which were generously provided by Dr. B. Vogelstein 
and H. Hermeking (Howard Hughes Medical Institute, Balti-
more, MD, USA) (Bunz et al. 1998) were grown as described 
previously (Saeed et al. 2015). HCT116 p53 −/− cells possess 
a significant mitotic checkpoint deficit such that they cannot 
respond normally to DNA-damaging agents, enter mitosis 
and subsequently replicate their genomes in the presence 
of DNA damage (Bunz et al. 1998). The drug resistance 
profile of HCT116 p53 −/− has been studied during the past 
years. Compared to wild-type cells, these knockout cells 
reveal resistance to established anticancer drugs of diverse 
pharmacological classes (doxorubicin, 5-fluorouracil and 
5′-deoxy-5-fluorouridine, cisplatin and oxaliplatin, etopo-
side, and vincristine) as well as to investigational cytotoxic 
compounds with activity against cancer (arsenic trioxide as 
PML/RARA inhibitor, nutlin-3a as p53 activator, the fluo-
ropyrimidine F10, the HDAC inhibitor entinostat and the 
synthetic polyamine DENSpm) and even cytotoxic but non-
cancer drugs (the antimalarial quinacrine, the anticonvulsant 
valproic acid and the anti-inflammatory and COX1/2-inhib-
itory ibuprofen (Brachtendorf et al. 2018; Bunz et al. 1999; 
Coker-Gurkan et al. 2015; Dawood et al. 2018; Dominija-
nni and Gmeiner 2018; Gunasegaran et al. 2020; Hernlund 
et al. 2008; Janssen et al. 2008; Kralova et al. 2009; Lin 
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et al. 2004; Mohapatra et al. 2012; Sonnemann et al. 2014; 
Terranova-Barberio et al. 2017).

RNA sequencing

The procedure was previously described (Kadioglu et al. 
2016a). Gene expressions were quantified using the FPKM 
(fragments per kilobase of transcript per million mapped 
reads) measure (Choudhri et al. 2018; Wesolowski et al. 
2013). The deregulation of genes in HCT116 p53 −/− cells 
was calculated by dividing overall FPKM values of genes 
in HCT116 p53 −/− cells by those in HCT116 p53 +/+ cells.

Pathway and network analysis

Fold change in RNA expression of ± 7 were applied for 
filtering (Kadioglu et al. 2016a), and then the deregulated 
gene list was subjected to Ingenuity Pathway Analysis (IPA) 
(QIAGEN Redwood City, USA, www.qiage​n.com/ingen​
uity) to identify specific networks and pathways in HCT116 
p53 −/− cells.

mFISH

HCT116 p53 −/− and HCT116 p53 +/+ cells were cytogenet-
ically prepared to obtain metaphase spreads according to 
standard procedures and analyzed using molecular cytoge-
netics. mFISH was performed as previously reported using 
human whole chromosome paints as probes (Kadioglu et al. 
2016a; Liehr et al. 2009a, b; Liehr and Pellestor 2009).

aCGH

Whole genomic DNA was extracted from HCT116 
p53 −/− and HCT116 p53 +/+ cells with QIAmp DNA mini kit 
(QIAGEN GmbH, Hilden, Germany). aCGH was performed 
as previously reported (Aust et al. 2013).

Western blotting

The protein expression levels of selected genes (i.e., 
ANGPT2 and catalase) were evaluated in HCT116 
p53 −/− and HCT116 p53 +/+ cells to validate their dereg-
ulation found by RNA sequencing analysis as previously 
described (Kadioglu et al. 2016a). Briefly, total proteins 
were extracted from cells using protein extraction buffer 
(M-PER™ mammalian protein extraction reagent mixed 
with 1% Halt™ protease inhibitor cocktail, Thermo Fisher 
Scientific). Samples equivalent to 30 µg were loaded to 
10% SDS-PAGE to be separated and then transferred to 
Ruti®-PVDF membranes (Millipore, Billerica, MA, USA). 
The membranes were blocked with 5% BSA (Carl Roth, 
Karlsruhe, Germany) for 1 h and probed with the selected 

primary antibodies at 4 °C against ANGPT2, catalase and 
β-actin (for all 1:1000, Cell Signaling Technology, Frank-
furt, Germany). After 24 h, the membranes were incubated 
with secondary antibody conjugated to HRP (1:2000, Cell 
Signaling Technology) for 1 h and detected with Luminata™ 
Classico Western HRP substrate (Merck Millipore Darm-
stadt, Germany). Images were analyzed using ImageJ soft-
ware (NIH, Bethesda, MD, USA).

Results

Differential gene expression profile of HCT116 p53−/− 
cells, downstream pathways and network analysis

Ratios of RNA-seq-derived FPKM values for the expres-
sion of each gene in HCT116 p53 −/− cells were considered 
as fold change of gene expression in comparison to that of 
HCT116 p53 +/+ cells. For further analysis, differential gene 
expression with a threshold of ± 7 was taken into account 
(Kadioglu et al. 2016a), which yielded 300 differentially 
expressed genes (Supplementary Table 1). The top 10 up- 
and down-regulated genes in HCT116-p53 −/− cells are listed 
in Table 1. RND3 (+ 235.6), MCPH1 (+ 85.7) and MYB 

Table 1   Top 10 up- and down-regulated genes in HCT116 p53 −/− 
cells compared to HCT116 p53 +/+ cells

Gene Differential expres-
sion (fold change)

Upregulation
  RND3 235.633
  MCPH1 85.701
  DCLK1 60.193
  ZNF772 37.039
  ANKRD31 37.028
  ZNF419 32.420
  LBH 31.954
  MYB 28.855
  MIR4477B 26.768
  MST1 25.177
Down-regulation
  DPEP1 − 431.858
  ICAM1 − 166.463
  EHF − 163.282
  TACSTD2 − 110.073
  LAMA4 − 104.721
  NPM2 − 85.415
  NRIP1 − 81.519
  HLA-DMB − 69.678
  HCG4B − 61.255
  MIR564, TMEM42 − 58.380

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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(+ 28.9) were among the most up-regulated genes, whereas 
DPEP1 (− 431.9), ICAM1 (− 166.5) and NPM2 (− 85.4) 
were the most down-regulated genes.

In network 1, histone H4, cyclin A and NFκB possessed 
the highest number of nodes, CD3 and Hsp70 had the high-
est number of nodes in the center of network 2. “Cancer”, 
“organismal injury and abnormalities” in network 1, whereas 
“cellular assembly and organization” and “molecular trans-
port” in network 2 were the affected biological functions. 
Erk1/2 showed the highest number of nodes in network 3. 
“Organismal injury and abnormalities” and “carbohydrate 
metabolism” were the affected biological functions in net-
work 3 (Fig. 1).

Several genes known to be involved in drug resistance 
were deregulated, implying that HCT116 p53 −/− cells 
exerted a multi-factorial resistance phenotype. If a fold 
change threshold of ± 7.0 was applied, one DNA repair 
gene, one oxidative stress gene, and one transcription factor 
gene were among the deregulated resistance genes implying 
that genes from those gene classes may have an important 
influence on the MDR phenotype of HCT116 p53 −/−. These 
genes are depicted in Table 2 and a full list of all deregulated 
genes involved in resistance mechanisms is provided in Sup-
plementary Table 2.

The top three networks were merged and the merged 
network was further analyzed. As can be seen from Fig. 2, 
NFκB resided in the center of the merged network together 
with PI3K and HSP70.

“Cancer”, “organismal injury and abnormalities” and 
“cell to cell signaling and interaction” were among the 
most affected biological functions in HCT116 p53 −/− cells 
(Fig. 3). Genes residing at the top 10 biological function list 
are shown in Supplementary Table 3.

“Th1 pathway” (p value: 0.000437), “IL4 signaling” (p 
value: 0.012589) were among the most significant signal-
ing pathways in HCT116 p53 −/− cells implying the possi-
ble immune response pathways influence on drug resistance 
(Fig. 4).

Among the 116 p53 target genes (Fischer 2017), 33 were 
down-regulated and 19 were up-regulated (fold changes 
were above a threshold of ± 1.5) as can be seen in Table 3.

A validation of the selected genes was performed at the 
protein level for ANGPT2 and catalase. As shown in Fig. 5, 
ANGPT2 was up-regulated (+ 8.7-fold), whereas catalase 
was down-regulated (− 1.9-fold) in HCT116 p53 −/− cells, 
correlating with the RNA sequencing output and validating 
the RNA expression data at the protein level.

mFISH

HCT116-p53 +/+ cells showed the karyotype 45 < 2n > , 
X, dup(10)(q?q?), der(16)t(8;16)(p13;?), der(18)t(17;18)
(?q;p11.2), whereas HCT116-p53 −/− cells had 45 < 2n > X, 

t(5;7)(q1?3;p22), dup(10)(q?q?), der(16)t(8;16)(p13;?), 
der(18)t(17;18)(?q;p11.2). The results of the mFISH analy-
ses are depicted in Fig. 6. HCT116-p53 −/− cells had a clonal 
de novo balanced translocation t(5;7)(q1?3;p22) compared 
to HCT116-p53 +/+ cells.

aCGH

HCT116 p53 +/+: Chromosomal amplification and dele-
tions were well reflected in the deregulation of gene expres-
sion as observed in RNA Seq analysis. LVRN was 3.3-fold 
down-regulated and AP3S1 was 1.7-fold up-regulated. The 
corresponding chromosomal locus (5q23.1) was amplified. 
FLJ42393 was 1.7-fold down-regulated. There was a dele-
tion at the corresponding chromosomal locus (3q27.3–q28). 
The results are summarized in Table 4.

HCT116 p53 −/−: Compared to HCT116 p53 +/+ cells, 
more amplifications and deletions were observed in 
HCT116-p53 −/− cells. This implies that p53 deletion led 
to an accumulation of additional chromosomal aberrations, 
amplifications and deletions. NXPH2 was 1.7-fold up-reg-
ulated, and there was an amplification at the correspond-
ing chromosomal locus. OR5K2 was 1.7-fold up-regulated, 
and there was an amplification at the corresponding chro-
mosomal locus. PARK2 was 8.1-fold down-regulated, and 
there was a deletion at the corresponding chromosomal 
locus. Correlation of aCGH data with RNA-Seq results 
clearly showed a differential expression of genes at the cor-
responding chromosomal locus amplification/deletion, as 
can be seen in Table 4. Overall aCGH results are depicted 
in Table 5.

Discussion

In the present study, we aimed to identify novel drug resist-
ance genes by using colon cancer cell line, HCT116 p53 +/+ 
and the drug-resistant HCT116 p53 −/− subline with TP53 
deletion as a model. The gene expression profiles, affected 
signaling pathways, biological functions and chromosomal 
abnormalities were identified by RNA sequencing, mFISH 
and aCGH.

Several genes known to be involved in drug resistance 
were deregulated supporting a multi-factorial resistance phe-
notype in HCT116 p53 −/− cells, those identified genes in 
various drug resistance clusters including apoptosis, DNA 
repair, ferroptosis, glutathione related, heat shock, oxida-
tive stress, transcription factors as listed in Supplemen-
tary Table 2 may have an important influence on the MDR 
phenotype.

The most up-regulated gene RND3/RhoE (+ 235.6-fold) 
was previously associated with tumor invasion, metastasis 
and was reported as a potential marker of drug resistance of 
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Fig. 1   Affected protein networks in HCT116 p53 −/− cells in comparison to HCT116 p53 +/+ cells. Genes that are labelled in green were down-
regulated, and genes that are labelled in red were up-regulated. The top three networks were depicted. a Network 1 b Network 2 c Network 3
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gastric cancer as well as relapse and prognosis for colorectal 
cancer cases (Chang et al. 2014; Li et al. 2009; Zhou et al. 
2013). CARD11 mutations have been associated with ibruti-
nib (Bartlett et al. 2018). CARD11 (− 7.4-fold) appeared in 
the list of genes in the top five biological functions (Supple-
mentary Table 3), indicating that apoptosis inhibition upon 
down-regulation of CARD11 might play an important role 
in the drug resistance phenotype of HCT116 p53 −/− cells. 

It was reported that CARD11 contributes to ibrutinib resist-
ance in cancer (Grommes et al. 2017; Wu et al. 2016) sup-
porting our observation that CARD11 could play role in 
drug resistance phenotype of HCT116 p53 −/− cells. DCLK1 
(+ 60.2-fold) has been reported to be associated with chem-
oresistance to cisplatin in non-small cell lung cancer cells 
and targeting DCLK1 by miR539 led to increased sensitivity 
to cisplatin (Deng et al. 2018). DCLK1 has also been asso-
ciated with drug resistance in colorectal cancer, pancreatic 
cancer, and kidney cancer (Ge et al. 2018; Makino et al. 
2020; Qu et al. 2019). LBH (+ 31.9-fold) has been reported 
as a potential marker for hepatocellular carcinoma, as its 
overexpression was associated with poor prognosis (Chen 
et al. 2018). Myb (+ 28.9-fold expression in knockout cells) 
is an oncogenic transcription factor playing a role in the pro-
motion of leukemic cell transformation (Introna and Golay 
1999). Myb was linked to cisplatin resistance in colon cancer 
cells (Funato et al. 2001). It is also involved in the devel-
opment and progression of several solid tumors, including 
melanoma (Ramsay and Gonda 2008; Schultz et al. 2009). 
Loss of TACSTD2 promoted squamous cell carcinoma pro-
gression and resistance through attenuating chemotherapeu-
tic reagent-induced apoptosis, implying that TACSTD2 could 
be used as a marker for pathological grading of SCC (Wang 

Fig. 1   (continued)

Table 2   Deregulated genes involved in classical drug resistance 
mechanisms in HCT116 p53 −/− cells compared to wild-type HCT116 
p53 +/+ cells (threshold: ± sevenfold changed expression)

Differential expres-
sion (fold change)

DNA repair
  XRCC2 11.200
  BRIP1 7.711
Oxidative stress
  NCF2 15.131
  MB − 8.093
Transcription factors
  MYB 28.855
  NFATC4 − 7.619
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et al. 2014). Interestingly, it was 110.1-fold down-regulated 
in HCT116 p53 −/− cells, pointing out that TACSTD2 down-
regulation could be a mechanism contributing to aggressive 
growth and MDR of HCT116 p53 −/− cells. Migration and 
invasion of esophageal squamous cell carcinoma cells were 
enhanced upon NRIP1 down-regulation (Ni et al. 2018). 
We observed that NRIP1 was 81.5-fold down-regulated in 
HCT116 p53 −/− cells, implying that NRIP1 down-regula-
tion could play a role in the MDR phenotype. HLA-DMB 
(−  69.7-fold) belongs to the major histocompatibility 

complex class II genes, and higher HLA-DMB expression 
was associated with higher survival rate via increased CD8 
lymphocyte numbers in advanced-stage serous ovarian 
cancer (Callahan et al. 2008). Down-regulation of HLA-
DMB may be linked with the MDR phenotype of HCT116 
p53 −/− cells by influencing tumor aggressiveness.

The NCF2 gene (+ 15.1-fold expression in knockout cells) 
encodes a subunit of NOX2. Depletion of NOX2 subunits 
reduced the formation of lung metastases following intrave-
nous injection of murine tumor cells (Martner et al. 2019). 

Fig.2   Merged protein network of network 1, 2, and 3
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Up-regulation of NCF2 promoted gastric cancer metastasis 
by LINC1410-miR-532-5p-NCF2-NF-κB feedback loop 
activation (Zhang et al. 2018).

Overexpression of the MYB transcription factor (+ 28.8-
fold expression in knockout cells) has been associated with 
poor prognosis and was frequently observed in colorectal 
cancer (CRC) (Cross et al. 2015). Another study pointed 
out that MYB expression in tumor cells due to its tumori-
genic role modulated the host immune response, which has 
the potential to influence the use of immunotherapy in CRC 
patients (Millen et al. 2016). MYC (+ 5.1-fold) is another 
transcription factor with a critical role in tumorigenesis. 
It regulates the expression of cell cycle related genes, and 
overexpression was observed in various cancer types, includ-
ing colon cancer (Kadioglu et al. 2016b; Pelengaris et al. 
2002). We have identified IL4 signaling among the most 
affected signaling pathways in HCT116 p53 −/− cells imply-
ing that immune response pathways possibly influence drug 
resistance. One study stated that IL-4 can augment BCR-
signalling and reduce the effectiveness of BCR-kinase 
inhibitors such as ibrutinib in CLL cells (Blunt et al. 2017). 

Another study reported that innate immune pathway activa-
tion via the interleukin-1 receptor-associated kinase 1 and 
4 (IRAK1/4) complex contributes to adaptive resistance in 
FLT3-mutant AML cells (Melgar et al. 2019). This result 
supports our observation about the association of immune 
response pathways with drug resistance.

The validation of RNA-seq results was performed for 
ANGPT2 and catalase by Western blotting. ANGPT2 mRNA 
was up-regulated, whereas CAT​ mRNA was down-regulated 
in HCT116 p53 −/− cells compared to HCT116 p53 −+/+ cells. 
This was confirmed for protein expression. CAT​ is frequently 
down-regulated in tumors (Glorieux et al. 2014), e.g. Breast 
cancer was characterized by down-regulation of catalase and 
concomitant overexpression of SOD (Wang et al. 2017). On 
the other hand, upregulation of ANGPT2 was associated 
with liver metastasis in colon cancer (Urosevic et al. 2020).

Network analysis pointed out “cancer”, “organismal 
injury and abnormalities” for network 1, “cellular assem-
bly and organization”, “molecular transport” for network 
2, “organismal injury and abnormalities”, “carbohydrate 
metabolism” for network 3 as major affected biological 

Fig.3   Affected biological functions (Top 10) in HCT116 p53 −/− cells in comparison to HCT116 p53 +/+ cells. The orange line depicts the statis-
tical significance threshold (p = 0.05)
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functions. Due to TP53 deletion, disruption in the DNA 
repair and apoptosis mechanisms were probably leading to 
aberrancies in cellular and organismal organization, ulti-
mately increasing tumorigenic and cancer progressive poten-
tial. In network 1, the genes encoding histone H4, cyclin 
A and NFκB possessed the highest number of nodes. CD3 
and HSP70 had the highest number of nodes in the center 
of network 2, implying an influence of cell cycle regulation, 

Table 3   Deregulated p53 target genes in HCT116 p53 −/− cells com-
pared to HCT116-p53 +/+ cells

Gene Differential expres-
sion (fold change)

Upregulation
  SPATA18 4.207
  CSF1 4.139
  TSPAN11 3.365
  TP53I3 3.098
  PTP4A1 2.352
  ABCA12 2.058
  ZNF79 2.032
  DUSP14 2.026
  FAM210B 1.975
  RPS27L 1.969
  GDF15 1.856
  NADSYN1 1.692
  FAS 1.639
  FAM212B 1.611
  ATF3 1.599
  HSPA4L 1.579
  TRIAP1 1.549
  AEN 1.547
  MDM2 1.513
Down-regulation
  GRHL3 − 7.153
  PRDM1 − 5.224
  PADI4 − 5.164
  CPE − 4.718
  FAM198B − 3.568
  WDR63 − 3.419
  FUCA1 − 2.999
  CDIP1 − 2.582
  ASTN2 − 2.441
  SULF2 − 2.315

Table 3   (continued)

Gene Differential expres-
sion (fold change)

  TNFRSF10D − 2.205
  TNFRSF10B − 2.058
  KITLG − 2.047
  PGF − 2.047
  BAX − 2.018
  ACER2 − 2.017
  CCNG1 − 1.874
  GPR87 − 1.873
  XPC − 1.867
  SERTAD1 − 1.863
  ARHGEF3 − 1.834
  SYTL1 − 1.804
  CD82 − 1.789
  FDXR − 1.756
  EPS8L2 − 1.718
  SESN1 − 1.706
  SESN2 − 1.654
  APOBEC3C − 1.648
  TP53INP1 − 1.609
  DYRK3 − 1.586
  ANKRA2 − 1.581
  ORAI3 − 1.558
  CES2 − 1.535
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inflammation and heat-shock response for drug resistance. 
Importantly, the appearance of molecular transport genes in 
network 2 highlighted a possible cross-talk between p53 and 
cellular transporters to promote the MDR in cancer cells. 

A member of ABC transporters, the ABCB1/MDR1 gene, 
is transcriptionally dependent on p53, where wild type p53 
negatively affects ABCB1/MDR1 gene expression through 
sequence-specific binding to the downstream promoter 
(Strauss et al. 1995). On the contrary, mutant p53 activated 
ABCB1/MDR1 promoter in different cell lines (Nguyen 
et al. 1994; Sampath et al. 2001). The ERK1/2 gene had 
the highest number of nodes in network 3, pointing out a 
contribution of ERK-regulated cell proliferation pathway to 
drug resistance. NFκB resided in the center of the merged 
network together with PI3K and HSP70, implying a contri-
bution of inflammatory pathways together with cell cycle 
and heat shock response phenomena in the MDR phenotype. 
Th1, Th2 pathways and CD28 signaling were among the 
most affected signaling pathways in HCT116-p53 −/− cells 
supporting the hypothesis that inflammatory pathways play 
an important role in the MDR phenotype.

Fig. 4   Affected signalling pathways (Top 10) in HCT116 p53 −/− cells in comparison to HCT116 p53 +/+ cells. The orange line depicts the sta-
tistical significance threshold (p = 0.05) and the orange chart depicts the ratio of deregulated genes in each pathway

Fig. 5   Protein expression of ANGPT2 and catalase in HCT116 p53 
−/− and HCT116 p53 +/+ cells as determined by Western blotting
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Fig. 6   mFISH analysis of HCT116 p53 +/+ (a) and HCT116 p53 −/− (b) cells

Table 4   Chromosomal 
aberrations and corresponding 
deregulated genes. Comparison 
between aCGH and RNA 
sequencing profiles

Chromosomal locus Cytoband # Probes Amp/Del Gene

HCT116 p53 +/+

  chr3:187898258-188,080,406 q27.3–q28 15 − 1.088643 FLJ42393
  chr5:115220574-115433864 q23.1 19 0.672502 AP3S1

LVRN
HCT116 p53 −/−

  chr2:139060642-139586488 q22.1 30 0.576345 NXPH2
  chr3:98146718-98600450 q11.2–q12.1 33 0.480192 OR5K2
  chr6:162343673-162707662 q26 32 − 0.797749 PARK2



970	 Archives of Toxicology (2021) 95:959–974

1 3

Table 5   Overall aCGH results

Chromosome Cytoband #Probes Amp/Del P value Annotations

HCT116 p53 +/+

  chr3:114336335-
114441291

q13.31 10 0.930778 1.43E-11 ZBTB20, CNV_98410

  chr3:187898258-
188080406

q27.3–q28 15 − 1.088643 7.50E-22 LPP, FLJ42393, 
CNV_8438…

  chr4:169510103-
169718417

q32.3 18 − 1.000585 3.99E-22 PALLD, CNV_68838, 
CNV_6350…

  chr5:115220574-
115433864

q23.1 19 0.672502 1.72E-11 AP3S1, LVRN, COMMD10

  chrX:67606357-
67674714

q12 7 1.187426 6.11E-13 OPHN1

  chrY:6,689,115-
6,823,761

p11.2 12 − 4.324700 1.07E-10 AMELY, TBL1Y

HCT116 p53 −/−

  chr2:139060642-
139586488

q22.1 30 0.576345 4.63E-14 SPOPL, NXPH2, 
CNV_6001…

  chr3:98146718-
98600450

q11.2–q12.1 33 0.480192 3.77E-11 OR5K1, OR5K2, 
CLDND1…

  chr3:116781727-
117480699

q13.31–q13.32 18 − 0.840402 1.93E-17

  chr3:188,915,318–
189,233,666

q28 16 0.678746 7.43E-11 TPRG1, CNV_6224, 
CNV_36118…

  chr6:162343673-
162707662

q26 32 − 0.797749 8.35E-27 PARK2, CNV_3649, 
CNV_8532…

  chr12:19212202-
19371177

p12.3 13 − 0.764834 3.82E-11 PLEKHA5, CNV_113275, 
CNV_5296…

  chr14:105957346-
107258824

q32.33 85 0.333574 2.22E-13 C14orf80, TMEM121, 
KIAA0125…

  chr15:94197624-
94591102

q26.1—q26.2 23 0.741784 2.28E-17 CNV_47871, CNV_34628, 
CNV_9268…

  chr16:78,328,380–
78,670,327

q23.1 24 − 1.124667 1.46E-37 WWOX, CNV_4014, 
CNV_3128…

  chr20:14928568-
15317311

p12.1 33 − 0.608444 7.87E-17 MACROD2, CNV_9315, 
CNV_30119…

  chrX:29398858-
29528742

p21.2 11 0.881627 2.58E-12 IL1RAPL1, CNV_3265

  chrX:96427803-
96727959

q21.33 25 − 3.569660 3.65E-319 DIAPH2, CNV_68008

Observed in both cell lines

Chromosome Cytoband Annotations Chromosome Cytoband Annotations

chr1:192899886-
193202164

q31.2 UCHL5, TROVE2, 
GLRX2…

chr16:78949665-
90163114

q23.1—q24.3 WWOX, MAF, DYNLRB2…

chr2:89427365-90242018 p11.2 CNV_34427, 
CNV_35873, 
CNV_107994

chr17:34450405-
34475514

q12 CNV_4031, CNV_8842, 
CNV_34507…

chr2:141719777-
142150170

q22.1 LRP1B, CNV_98004, 
CNV_9962…

chr17:43457048-
81093254

q21.31—q25.3 ARHGAP27, SH3D20, 
PLEKHM1…

chr2:205437915-
205794583

q33.3 PARD3B, CNV_63286, 
CNV_3405…

chr19:20644642-
20984793

p12 ZNF737, ZNF626, 
CNV_4070…

chr3:60193460-60230828 p14.2 FHIT, CNV_8983, 
CNV_51130…

chr22:24347959-
24390254

q11.23 LOC391322, GSTT1, 
GSTTP2

chr4:19271201-19814969 p15.31 CNV_98645, 
CNV_91960, 
CNV_8998…

chrX:550458-2687250 p22.33 SHOX, CRLF2, CSF2RA…
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Conclusions

In conclusion, the gene expression profiles of HCT116 
p53 −/− and HCT116 p53 +/+ colon cancer cell lines were 
analyzed by RNA sequencing, mFISH and aCGH, to iden-
tify differentially expressed genes, affected protein networks, 
pathways, biological functions in addition to chromosomal 
aberrations in a comparative manner. Various genes, path-
ways and networks were identified that might be associated 
with drug resistance and aggressive behavior of colon can-
cer. This study clearly demonstrates that drug resistance in 
TP53-knockout cells is rather determined by multiple than 
by single factors. It is apparent that multi-factorial drug 
resistance complicates the development of novel treatment 
strategies. Nevertheless, our study may represent a starting 
point to design more specific and promising anti-cancer 
strategies bypassing drug resistance.
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Table 5   (continued)

Observed in both cell lines

Chromosome Cytoband Annotations Chromosome Cytoband Annotations

chr4:91321265-91603292 q22.1 FAM190A, CNV_29746, 
CNV_98795…

chrX:29548179-
29946620

p21.2 IL1RAPL1, CNV_3265, 
CNV_9860…

chr4:184337598-
185694854

q35.1 CDKN2AIP, ING2, 
RWDD4A…

chrX:154947952-
155097214

q28 SPRY3, CNV_0828, 
CNV_68067…

chr5:104011349-
104445773

q21.2 RAB9P1, CNV_9021, 
CNV_51512…

chrY:500458-2637250 p11.32–p11.31 SHOX, CRLF2, CSF2RA…

chr6:1797129-2265280 p25.3 GMDS, CNV_51856, 
CNV_69297…

chrY:2650450-9901314 p11.31–p11.2 SRY, RPS4Y1, ZFY…

chr6:32480027-32521929 p21.32 HLA-DRB5, HLA-DRB6, 
CNV_3603…

chrY:2808108-3163644 p11.31–p11.2 ZFY

chr7:133788914-
133833057

q33 LRGUK, CNV_3704, 
CNV_36620…

chrY:3713948-5471518 p11.2 PCDH11Y, CNV_31579, 
CNV_59553…

chr8:39237438-39374789 p11.22 ADAM5P, ADAM3A, 
CNV_2749…

chrY:7117061-7159833 p11.2 PRKY

chr8:67392636-
146294098

q13.1–q24.3 C8orf46, MYBL1, 
VCPIP1…

chrY:7382914-7663842 p11.2 TTTY16, CNV_83913, 
CNV_97170…

chr10:100050353-
131197707

q24.2–q26.3 PYROXD2, MIR1287, 
HPS1…

chrY:13992304-
28767604

q11.21–q11.23 TTTY15, USP9Y, DDX3Y…

chr10:131388943-
135434178

q26.3 MGMT, EBF3, GLRX3… chrY:14443070-
14489146

q11.21 CNV_0830, CNV_37072

chr12:66303379-
66937395

q14.3 HMGA2, LLPH, 
TMBIM4…

chrY:15192361-
15251375

q11.221

chr12:76107468-
76705883

q21.2 PHLDA1, NAP1L1, 
CNV_101564

chrY:15704763-
15956423

q11.221 TMSB4Y

chr14:22360671-
22936054

q11.2 CNV_34544, CNV_4828, 
CNV_61368…

chrY:21718251-
21782669

q11.222 CYorf15A, CYorf15B, 
CNV_31588…

chr16:106271-724192 p13.3 SNRNP25, RHBDF1, 
MPG…

chrY:22920321-
23150221

q11.223 RPS4Y2, CNV_31588

chr16:21475039-
21991860

p12.2 LOC100271836, 
SLC7A5P2, METTL9…

chrY:28485304-
28722435

q11.23 CNV_4185, CNV_31592

chr16:78678935-
78724670

q23.1 WWOX chrY:59050958-
59200220

q12 SPRY3, CNV_83981, 
CNV_97244…
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