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Abstract: The biological activities of shancigusin C (1) and bletistrin G (2), natural products isolated
from orchids, are reported along with their first total syntheses. The total synthesis of shancigusin C
(1) was conducted by employing the Perkin reaction to forge the central stilbene core, whereas the
synthesis of bletistrin G (2) was achieved by the Wittig olefination followed by several regioselective
aromatic substitution reactions. Both syntheses were completed by applying only renewable starting
materials according to the principles of xylochemistry. The cytotoxic properties of shancigusin
C (1) and bletistrin G (2) against tumor cells suggest suitability as a starting point for further
structural variation.
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1. Introduction

Traditional medicine is an almost inexhaustible source for the identification of novel
bioactive substances. Phytochemistry as an independent discipline has been engaged in
bioactivity-guided isolation of new chemical structures for decades. If pharmacological
activities of isolated molecules are demonstrated in vitro, this often serves as an argument
to scientifically substantiate their traditional use for certain diseases. Plants produce chemi-
cal substances mainly to defend themselves against microbes and predators. Conversely,
this means that even plants without ethnopharmacological background and no use in
traditional medicine would contain chemical substances that might be pharmacologically
active. As of yet, this aspect has remained understudied in phytochemical research.

Therefore, we were interested in the large and heterogeneous group of orchids, which,
on the one hand, definitely has ethnopharmacological significance in Asia, Africa and
South America. On the other hand, they are mostly rare in Europe and therefore rarely
used in folk medicine.

Plants from the orchid family have been widely used in the traditional Chinese
medicine (TCM) and oriental folk medicines to treat tumors, burns, frostbite, coughs,
tuberculosis, bronchitis and gastrointestinal bleeding, as well as to remove “heat and
toxin” [1]. According to previous reports, extracts from a variety of different terrestrial
orchids contain remarkable amounts of stilbenes and dihydrostilbenes, such as dihydro-
resveratrol (3), moscatilin (4), resveratrol (5) and combretastatin A-4 (6) [2–8], which are
known to exhibit antineoplastic, antimitotic and anticarcinogenic properties as well as
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inhibit oxidative stress (Figure 1) [9–21]. The structurally unprecedented dihydrostilbenes
shancigusin C (1) and bletistrin G (2), both featuring 4-hydroxybenzyl substituents, were
isolated from the orchidaceous species Pleione yunnanensis and Bletilla striata in 2009 and
2019, respectively [6,7]. This subgroup within the class of dihydrostilbenes appears to be
widely underexplored concerning their biological activities. Moreover, no total synthetic
access has been described so far.
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Figure 1. Polyhydroxylated and methoxylated stilbenes and dihydrostilbenes isolated from orchida-
ceous plants.

Shancigusin C (1) and bletistrin G (2) were isolated and identified by us in 2017 from
Himantoglossum hircinum (L.) Spreng [22]. This plant is a rare orchid that grows in southern
regions of Germany on calcareous and stony clay soils. It occurs on dry grasslands, rough
pastures and orchards on sloping hillsides. A large number of these plants appeared in
a private meadow near a village in the Donnersberg County. This unusual assemblage
was probably due to the sheltered location and favorable growing conditions. This gave
rise to the idea of harvesting some specimens of the plant for scientific purposes and
searching for phytochemical constituents with written permission from the authorities
(see the Supporting Information). While the structure elucidation of 1 was first published
by Guo in 2009 [6], the structure elucidation of 2 and the total synthesis of both natural
products 1 and 2 is reported for the first time in this investigation.

2. Results
2.1. Structure Elucidation of Bletistrin G (2)

The molecular formula of bletistrin G (2) was established as C28H26O5 by HR-ESI-MS.
The 1H-NMR and COSY spectra of 2 exhibited the resonances of two 1,4-substituted aro-
matic systems bearing oxygen substituents at C-4′ and C-4” (156.0 and 156.1 ppm). HMBC
contacts of both ortho protons (H-2′/H-6′ and H-2”/H-6”) to two different methylene
groups (2α-CH2 and 4α-CH2) determined the presence of two 4-hydroxybenzyl groups.
HMBC contacts of 2α-CH2/4α-CH2 and a single proton at 6.31 ppm (H-6) to the same
quaternary carbon atoms Cq-2 and Cq-4 (114.9 and 119.0) finally showed the presence of a
2,4,5-trisubstituted resorcinol core bearing two 4-hydroxybenzyl substituents at positions
2 and 4. The resorcinol proton at 6.31 ppm further exhibited an HMBC contact to another
methylene group 5α-CH2, which was in the vicinity (confirmed by COSY) of another
methylene group 1′′′α-CH2. Since both methylene groups 5α-CH2 and 1′′′α-CH2 showed
HMBC contacts to quaternary carbon atoms Cq-5 and Cq-1′′′ (140.9 and 145.1 ppm), the re-
sorcinol core was unambiguously connected to another aromatic core by an ethano-bridge
via its 5-position (Figure 2).
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Figure 2. Essential HMBC correlations of bletistrin G (2).

The remaining four aromatic protons which appeared at 7.03 (t, 1H, J = 7.9 Hz, H-5′′′),
6.57 (d, 1H, J = 7.9 Hz, H-4′′′) and 6.55–6.52 (m, 2H, H-2′′′, H-6′′′) ppm suggested the
presence of a 1,3-disubstituted aromatic ring. HMBC contacts of proton H-5′′′ to Cq-1′′′

(145.1 ppm) and Cq-3′′′ (158.3 ppm) finally revealed that the last aromatic core featured a
hydroxyl group at Cq-3′′′. The complete signal assignment was confirmed by the COSY,
HSQC, HMBC and NOESY spectra. This work of 2017 was reported in the doctoral thesis
of U. Kauhl in 2018 [22]. Parallel to our synthetic work, other researchers reported the
isolation of bletistrin G (2) from rhizomes of Bletilla striata and disclosed its structure [7].

2.2. Total Synthesis of Shancigusin C (1)

Our initial synthesis route for 1 and 2 was developed under the premise that the entire
carbon skeleton of both natural products should be synthesized from renewable starting
materials according to the principles of xylochemistry [23–26]. To this end, shancigusin
C (1) and bletistrin G (2) were traced back retrosynthetically to the polymethoxylated
dihydrostilbene (9), which should be prepared via Perkin condensation of phenylacetic
acid (12) with 3-methoxybenzaldehyde (8, Scheme 1). These two materials are ultimately
derivable from citric acid (11), one of the most prevalent natural fruit acids [27,28], 4-
hydroxybenzoic acid (10) and vanillin (7), both being readily available products of several
lignin depolymerization processes [29–31].
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The synthesis started with the preparation of the requisite coupling partner m-anisaldehyde
(8) and p-anisoyl chloride (16) (Scheme 2A). The aldehyde (8) was accessible via two steps
starting from lignin-derivable vanillin (7), which was converted into a triflate (13) with an
excellent yield, followed by reductive C-O bond cleavage generating m-anisaldehyde (8)
with a 76% yield. To prepare a chloride (16), lignin-derivable 4-hydroxybenzoic acid
(10) was doubly methylated with dimethyl sulfate (available, e.g., from wood-based
methanol) [32] to form an ester (14). Subsequent saponification with KOH to p-anisic
acid (15) and treatment with SOCl2 then furnished p-anisoyl chloride (16) with an 89%
yield over three steps. In the search for strategies for the construction of a coupling partner
(12) containing a 3,5-dihydroxyphenyl core, a report by Theilacker [33] suggested the
use of dimethyl-1,3-acetonedicarboxylate (17) available through decarbonylation from the
naturally occurring citric acid (11) with an 82% yield (Scheme 2B). Cyclization involving
sodium as a catalyst then led to the formation of methyl phenylacetate (18) with a 74%
yield [33,34]. With 18 in hand, simultaneous saponification of all ester groups followed by
acid-induced double decarboxylation generated the desired 3,5-dihydroxyphenylacetic
acid (19) with an excellent yield. Methylation of 19 using dimethyl sulfate then provided
dimethoxylated methyl phenylacetate (20) with a 95% yield, which was regioselectively
acylated under Friedel–Crafts conditions to furnish a diaryl ketone (21) with a 75% yield.
The keto group was then reduced to give the corresponding diphenylmethane (22), which
was saponified producing the desired coupling partner (12) with an 86% yield over two
steps. Condensation with 8 under Perkin conditions exclusively generated trans-cinnamic
acid (23) with a 71% yield. In the next step, Cu2O-mediated decarboxylation of 23 afforded
a cis/trans mixture of stilbenes (24) with a combined yield of 28%. The low yield in this
step was caused by the cylization of 23 into different inseparable side products. Using
hydrogen under ambient pressure, the stilbene 24 could be converted into the correspond-
ing dihydrostilbene 9 with an 88% yield. To complete the total synthesis of shancigusin
C (1), the methyl ethers were cleaved by BBr3, smoothly furnishing the natural product
1 with a 91% yield. In this way, shancigusin C (1) could be synthesized with a 6% yield
over 11 consecutive steps, starting from citric acid (11).

2.3. Total Synthesis of Bletistrin G (2)

It was anticipated that the chelating effect of the C-1 and C-5 methoxy group of the
dihydrostilbene (9) (we chose atom numbering based on the IUPAC nomenclature for
unknown compounds to prevent confusion with the conventional stilbene numbering
system) might favor lithiation at C-6 which would upon trapping with 16 result in an
easy access to the main core of bletistrin G (2). Unfortunately, all attempts to achieve this
lithiation regioselectively failed and in every case, a large number of regioisomeric singly
and doubly substituted side products could be detected.

Hence, the initial synthetic route to 2 was abandoned. It was instead decided to first at-
tach a 4-methoxybenzyl substituent through a reaction with p-anisaldehyde (25)—available
on an industrial scale from naturally occurring anethole—at C-2 of brominated dihydrostil-
benes 27, which should be synthesized starting from vanillin (7) and 3,5-dihydroxybenzoic
acid (29), the latter being accessible with a high yield from the well-known xylochemi-
cal benzoic acid (28) through double sulfonation and hydrolysis (Scheme 3) [35]. In the
last steps, the second 4-methoxybenzyl substituent should be attached to one of the free
ortho-positions of 26.
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Scheme 3. Retrosynthetic aspects for the total synthesis of bletistrin G (2).

The synthesis of 2 began with regioselective bromination of 3,5-dihydroxybenzoic
acid (29) to get access to the C-4 position. The brominated product 30 was obtained with
a 92% yield and further converted into a dihydrostilbene 27 over six consecutive steps
(Scheme 4). First, methylation of 30 afforded methyl benzoate (31) with an 81% yield, which
was reduced to alcohol 32 using LiAlH4. Upon treatment with PBr3, the corresponding
benzyl bromide 33 was obtained with an 82% yield over two steps. Conversion of 33 into a
phosphonium salt 34 and the Wittig reaction with m-anisaldehyde (8) afforded a cis/trans-
mixture of stilbenes 35, which were hydrogenated to give the desired dihydrostilbene 27
with a 90% yield over three steps, retaining the bromine substituent. With ample amounts
of 27 at hand, benzhydrol 36 was prepared by the use of n-BuLi/p-anisaldehyde (25) and
subsequently reduced using Et3SiH to furnish 26 with an 86% yield over two steps. In
the next step, the ortho position of 26 was brominated, generating 37 with a quantitative
yield. Here, the use of dichloromethane as a solvent at low temperatures was of great
importance since at higher temperatures or in other solvents, unselective bromination
dominated. After halogen/lithium exchange and quenching the intermediate lithium
salt with p-anisaldehyde (25), alcohol 38 was produced with a 53% yield. The major
side product in this reaction was a dihydrostilbene 26, which could be recycled by flash
chromatography with a 33% yield. Acid-promoted reduction of the alcohol 38 this time did
not furnish a dihydrostilbene 41, but led to the formation of 39 and dibenzocycloheptane
40. The latter represents the core structure of bleochrin F (43), another natural product
isolated from orchids, which has not been synthesized so far. To achieve reduction without
cyclization, compound 38 was to produce the desired dihydrostilbene 41 with an 81% yield.
At this stage, all that remained to be done was the cleavage of the methyl ethers, which was
again completed by the use of BBr3 affording bletistrin G (2) and another cyclized product,
42, with an 88% and 5% yield, respectively. In this way, bletistrin G (2) could be synthesized
with an 18% yield over 13 consecutive steps, starting from benzoic acid (29). Both side
products 39 and 42 are most likely generated via hydride transfer reactions predestined
for diarylmethanes and diarylmethanols [36]. In the latter case, either the solvent (DCM)
or the bromomethane liberated from O-demethylation could have acted as the hydride
acceptors under the strongly Lewis acidic reaction conditions.
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2.4. Biological Results

The growth inhibitory activity of both synthetic compounds was investigated in wild-
type drug-sensitive CCRF-CEM tumor cells and in multidrug-resistant CEM/ADR5000 cells
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by means of the resazurin assay. As depicted in Figure 3, both compounds inhibited both
cell lines, albeit at different concentrations.

Figure 3. Cytotoxicity of shancigusin C (1) and bletistrin G (2) towards human sensitive CCRF-CEM
and multidrug-resistant CEM/ADR5000 leukemia cells.

The growth of CCRF-CEM cells was inhibited by 50% at the shancigusin C (1) con-
centration of 17.9 ± 0.6 µM, while 87.2 ± 9.6 µM were necessary to inhibit the growth of
CEM/ADR5000 cells by half. The corresponding degree of resistance was 4.87.

Bletistrin G (2) inhibited the CCRF-CEM cell growth with an IC50 value of 21.6± 3.0 µM
and the CEM/ADR5000 cell growth with IC50 of 96.2± 2.1 µM. Hence, the CEM/ADR5000
cells were 4.45-fold more cross-resistant to bletistrin G (2).

3. Discussion

In this study, we isolated shancigusin C (1) and bletistrin G (2) from the protected
species Himantoglossum hircinum and described their total chemical synthesis.

The cytotoxic properties of both compounds against tumor cells are indicative of their
pharmacological activity and potential suitability as lead compounds for derivatization of
new candidate compounds with improved pharmacological features for tumor therapy.
The so-called multidrug-resistant phenotype, which is mediated by ATP-binding cassette
(ABC) transporters such as P-glycoprotein, is a particularly feared phenomenon of resis-
tance to established cytostatic drugs [37]. Our analyses indicate that multidrug-resistant
CEM/ADR5000 cells were also cross-resistant to shancigusin C (1) and bletistrin G (2).
However, the degrees of cross-resistance were low (resistance levels below 5), whereas re-
sistance to the standard drug doxorubicin was above 1000. High-grade cross-resistance was
also measured in CEM/ADR5000 cells towards other established cytostatic drugs (other
anthracyclines, Vinca alkaloids, taxanes, etc.) [38]. This suggests that shancigusin C (1) and
bletistrin G (2) have some potential to inhibit not only sensitive but also multidrug-resistant
tumor cells.

In summary, by applying only sustainable starting materials to construct the entire
carbon skeleton of the products, the first total syntheses of the unusual natural products
shancigusin C (1) and bletistrin G (2) were executed in 11 and 13 steps, respectively. As
most of the reactions can be run on a gram scale with moderate to very high yields, the
described synthetic pathways should be amenable to the synthesis of related natural
products allowing for the evaluation of their yet unknown biological activities.

This investigation also supports the concept that chemical synthesis of bioactive com-
pounds (e.g., of shancigusin C (1) and bletistrin G (2)) derived from rare plants represents
an effective means to protect plants from extinction because chemical synthesis prevents
harvesting of plant materials from the wild in order to obtain sufficient materials for
biological investigations or even preclinical drug development.
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4. Materials and Methods

Unless otherwise stated, all reagents and solvents were obtained from commercial
suppliers (Sigma-Aldrich (St. Louis, MI, USA), Alfa Aesar (Haverhill, MA, USA), TCI
chemicals (Tokyo, Japan), ABCR (Karlsruhe, Germany), Acros Organics (Fair Lawn, NJ,
USA) and Fisher Scientific (Waltham, MA, USA)) and used as provided without prior
purification. Anhydrous diethyl ether, tetrahydrofuran and toluene were dried with an
MBraun solvent purification system 5. Dichloromethane was obtained by distillation from
calcium hydride under argon atmosphere. Flash column chromatography was performed
using silica gel (35–70 µm, Acros Organics). Analytical thin-layer chromatography (TLC)
was done on Merck silica gel plates (60 F254) with defined solvent mixtures and visualized
under UV light irradiation and/or TLC staining reagents. Melting points were determined
in open capillary tubes and are uncorrected. IR spectra were measured with a Tensor
27 with a diamond ATR unit from Bruker (Billerica, MA, USA) and are reported in terms
of frequency of absorption (ν, cm–1). NMR spectra were recorded on a Bruker Avance-III
HD (1H-NMR: 300 MHz, 13C-NMR: 75.5 MHz), a Bruker Avance-II (1H-NMR: 400 MHz,
13C-NMR: 100.6 MHz) or a Bruker Avance-III (1H-NMR: 600 MHz, 13C-NMR: 151.1 MHz)
spectrometer. Chemical shifts are referenced to residual solvent signals (CDCl3: 7.26 ppm
and 77.16 ppm, DMSO-d6: 2.50 ppm and 39.52 ppm, (CD3)2CO: 2.05 ppm and 27.98 ppm,
D2O: 4.79 ppm, MeOD: 3.31 ppm and 49.00 ppm for 1H-NMR, COSY and 13C-NMR, HSQC,
HMBC respectively) and reported in parts per million (ppm) relative to tetramethylsilane
(TMS). Electron spray ionization (ESI) mass spectra were recorded on a 1200-series HPLC-
system or a 1260- series Infinity II HPLC-system (Agilent-Technologies, Santa Clara, CA,
USA) with binary pump and integrated diode array detector coupled to a LC/MSD-Trap-
XTC-mass spectrometer (Agilent-Technologies) or a LC/MSD Infinitylab LC/MSD (G6125B
LC/MSD). High resolution mass spectra were recorded on a Micromass-Q-TOF-Ultima-3-
mass spectrometer (Waters, Milford, MA, USA) with LockSpray-interface and a suitable
external calibrant.

4.1. Biological Part

Himantoglossum hircinum grew wild on a private meadow in the Donnersberg county
(Rhineland-Palatinate). Botanical verification was performed by one of the authors (T.E.).
The plant was harvested for scientific reasons with written permission of the Structural and
Approval Directorate South, Rhineland Palatine (Struktur- und Genehmigungsdirektion
Süd, Rheinland-Pfalz) according to §45, paragraph 7, no. 3 BNatSchG (AZ 42/553-251,
letter dated from 19 February 2015). A voucher specimen has been deposited at the
Department of Pharmaceutical Biology (Institute of Pharmaceutical Biology, Johannes
Gutenberg University, Mainz, Germany).

The dried biomass of the aerial parts of Himantoglossum hircinum (130.4 g) was ex-
tracted repeatedly with acetone (5×) at 22 ◦C to yield a concentrated crude extract of 10.5 g.
This crude extract was adsorbed to silica gel 60 (Merck, 0.015–0.040 mm), dried and used
for flash chromatography on silica gel 60. A solvent gradient was used for separation
starting at 100% cyclohexane to 100% ethyl acetate to 100% methanol. In the intermediate
(128.3 mg) eluted at 1:1 cyclohexane/ethyl acetate the desired compounds were detected.
Preparative HPLC with this intermediate (two-step MeCN/H2O gradient, 23% MeCN
to 31.8% MeCN in 19 min, 31.8% MeCN to 34% in 14 min, 21 mL/min, Agilent Eclipse
XDB-Phenyl, 5µm, 21.2 × 150 mm, 22 ◦C) yielded shancigusin C (9.9 mg, RT 17.7 min) and
bletistrin G (3.7 mg, RT 28.8 min).

4.2. Biological Evaluation

Wild type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells have been ob-
tained from Dr. Axel Sauerbrey, Department of Pediatrics, University Hospital Jena, Jena,
Germany). The development of CEM/ADR5000 by doxorubicin selection, the overex-
pression of multidrug-resistance-conferring P-glycoprotein and their maintenance in cell
culture have been described [39–41].
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The growth inhibitory potential of these two cell lines has examined by using the
resazurin viability assay [42]. The test principle is based on the reduction of the colorless
resazurin to the highly fluorescent resorufin in viable cells. Upon exposure to cytotoxic
compounds, the fluorescence intensity decreases in a dose-dependent manner. The fluores-
cence was measured using an Infinite M2000 Pro plate reader (Tecan, Crailsheim, Germany).
The performance of this assay in our hands has been reported [43,44].

Supplementary Materials: The following are available online: Synthetic procedures and ana-
lytical data, crystallographic data and structure refinement for 1, NMR spectra, references for
experimental section.
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